Skip to main content
Log in

X-ray Observations of Historical Classical Nova Counterparts with eROSITA Telescope Onboard the SRG Orbital Observatory during the All-Sky Survey

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The X-ray emission from the counterparts of historical classical novae (CNe) in our Galaxy is studied. For this purpose, we use data from three SRG/eROSITA sky surveys in the half of the sky for the processing of which the Russian SRG/eROSITA consortium is responsible. Out of 309 historical CNe, X-ray emission has been detected from 52 sources with 0.3–2.3 keV luminosities \(L_{X}\approx 10^{30}\sim 10^{34}\) erg s\({}^{-1}\). Among them, two sources with supersoft spectra are associated with the post-nova supersoft X-ray emission. X-ray spectroscopy suggests that systems with magnetized white dwarfs (WDs) may account for some fraction in our sample of CN counterparts detected in X-rays. This suggestion will be checked during further SRG/eROSITA sky surveys. The CN counterparts represent a bona fide sample of accreting WDs with non-steady thermonuclear hydrogen burning on their surface, while their X-ray luminosity in quiescence is a good indicator of the accretion rate in a binary system. Using this fact, we have constructed the accretion rate distribution of WDs with non-steady hydrogen burning and compared it with the accretion rate distribution of known steady supersoft X-ray sources in our Galaxy and nearby external galaxies. There is a pronounced dichotomy between these two distributions—the CN counterparts and the steady supersoft sources are in different regions, in accordance with the predictions of the theory of thermonuclear hydrogen burning on the WD surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.cbat.eps.harvard.edu/nova_list.html.

  2. https://asd.gsfc.nasa.gov/Koji.Mukai/novae/novae.html.

  3. https://projectpluto.com/galnovae/galnovae.htm.

  4. See the note for work in XSPEC: https:// heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendix Statistics.html.

  5. See Appendix B in the note for work in XSPEC.

  6. Note that when using the mkcflow model, it is necessary to set the redshift parameter \(z>0\), because the model was initially created to describe the X-ray emission from a galaxy cluster. We determined the redshift parameter from the distances given in Table 2 and the Hubble constant \(H_{0}=69.3\) km s\({}^{-1}\) Mpc\({}^{-1}\).

REFERENCES

  1. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).

    Article  ADS  Google Scholar 

  2. K. Arnaud, in emphAstronomical Data Analysis Software and Systems V, Ed. by G. H. Jacoby and J. Barnes, ASP Conf. Ser. 101, 17 (1996).

  3. K. Ayani, M. Fujii, and S. Maeno, Central Bureau Electron. Telegrams 3140, 2 (2012).

    Google Scholar 

  4. E. Aydi, K. Sokolovsky, L. Chomiuk, J. Strader, A. Kawash, K. Page, et al., Astron. Telegram 14710, 1 (2021).

    ADS  Google Scholar 

  5. Ş. Balman, J. Krautter, and H. Ögelman, Astrophys. J. 499, 395 (1998).

    Article  ADS  Google Scholar 

  6. D. S. Baskill, P. J. Wheatley, and J. P. Osborne, Mon. Not. R. Astron. Soc. 357, 626 (2005).

    Article  ADS  Google Scholar 

  7. N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp, D. Lenz, et al. (HI4PI Collab.), Astron. Astrophys. 594, A116 (2016).

    Google Scholar 

  8. M. Bode and A. Evans, Classical Novae, Vol. 43 of Cambridge Astrophysics (Cambridge Univ. Press, Cambridge, 2008).

  9. K. Brecher, W. Ingham, and P. Morrison, Astrophys. J. 213, 492 (1977).

    Article  ADS  Google Scholar 

  10. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, et al. (Gaia Collab.), Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  11. M. Candy, G. Alcock, and R. Zissell, IAU Circ. 2022, 1 (1967).

  12. J. Cardelli, G. Clayton, and J. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  13. W. Cash, Astrophys. J. 228, 939 (1979).

    Article  ADS  Google Scholar 

  14. D. Chochol, S. Shugarov, Ľ. Hambálek, A. Skopal, Š. Parimucha, and P. Dubovský, in The Golden Age of Cataclysmic Variables and Related Objects V (2021), Vols. 2–7, p. 29.

    Google Scholar 

  15. L. Chomiuk, B. Metzger, and K. Shen, arXiv: 2011.08751 (2020).

  16. P. Collins, B. Skiff, S. Bus, J. Mattei, G. Hurst, D. Moore, et al., IAU Circ. 5454, 1 (1992).

    ADS  Google Scholar 

  17. M. Darnley, M. Bode, R. Smith, and A. Evans, Astron. Telegram 5279, 1 (2013).

    ADS  Google Scholar 

  18. M. Fujimoto, Astrophys. J. 257, 767 (1982a).

    Article  ADS  Google Scholar 

  19. M. Fujimoto, Astrophys. J. 257, 752 (1982b).

    Article  ADS  Google Scholar 

  20. I. Galiullin and M. Gilfanov, Astron. Astrophys. 646, A85 (2021).

    Article  ADS  Google Scholar 

  21. J. Gallagher and S. Starrfield, Ann. Rev. Astron. Astrophys. 16, 171 (1978).

    Article  ADS  Google Scholar 

  22. J. Greiner, Lect. Notes Phys. 472, 299 (1996).

  23. J. Greiner, G. Hasinger, and P. Kahabka, Astron. Astrophys. 246, L17 (1991).

    ADS  Google Scholar 

  24. T. Güver and F. Özel, Mon. Not. R. Astron. Soc. 400, 2050 (2009).

    Article  ADS  Google Scholar 

  25. I. Hachisu, M. Kato, T. Kato, and K. Matsumoto, in The Physics of Cataclysmic Variables and Related Objects, Ed. by B. T. Gänsicke, K. Beuermann, and K. Reinsch, ASP Conf. Ser. 261, 629 (2002).

    Google Scholar 

  26. I. Hachisu and M. Kato, Astrophys. J. Suppl. Ser. 167, 59 (2006).

    Article  ADS  Google Scholar 

  27. I. Hachisu and M. Kato, Astrophys. J. 709, 680 (2010).

    Article  ADS  Google Scholar 

  28. I. Hachisu and M. Kato, Astrophys. J. Suppl. Ser. 242, 18 (2019).

    Article  ADS  Google Scholar 

  29. T. E. Harrison, J. J. Johnson, B. McArthur, G. Benedict, P. Szkody, S. Howell, et al., Astron. J. 127, 460 (2004).

    Article  ADS  Google Scholar 

  30. T. Harrison and R. Campbell, Mon. Not. R. Astron. Soc. 459, 4161 (2016).

    Article  ADS  Google Scholar 

  31. K. Haseda, D. West, H. Yamaoka, and G. Masi, IAU Circ. 7975, 1 (2002).

  32. M. Henze, W. Pietsch, F. Haberl, M. Hernanz, G. Sala, M. Della Valle, et al., Astron. Astrophys. 523, A89 (2010).

    Article  Google Scholar 

  33. M. Henze, W. Pietsch, F. Haberl, M. Hernanz, G. Sala, D. Hatzidimitriou, et al., Astron. Astrophys. 533, A52 (2011).

    Article  Google Scholar 

  34. M. Henze, W. Pietsch, F. Haberl, M. Della Valle, G. Sala, D. Hatzidimitriou, et al., Astron. Astrophys. 563, A2 (2014).

    Article  Google Scholar 

  35. M. Hernanz and G. Sala, Science (Washington, DC, U.S.) 298, 393 (2002).

    Article  ADS  Google Scholar 

  36. M. Hernanz and G. Sala, Astron. Nachr. 331, 169 (2010).

    Article  ADS  Google Scholar 

  37. E. van den Heuvel, D. Bhattacharya, K. Nomoto, and S. Rappaport, Astron. Astrophys. 262, 97 (1992)

    ADS  Google Scholar 

  38. Y. Hillman, D. Prialnik, A. Kovetz, and M. Shara, Mon. Not. R. Astron. Soc. 446, 1924 (2015).

    Article  ADS  Google Scholar 

  39. K. Hirosawa, H. Narumi, K. Kanai, and W. Renz, Central Bureau Electron. Telegrams 399, 1 (2006).

    Google Scholar 

  40. M. Honda, K. Osawa, K. Osada, S. Ito, N. Hashimoto, S. Shugarov, et al., IAU Circ. 2826, 1 (1975).

    ADS  Google Scholar 

  41. K. Hornoch, K. Sarneczky, J. West, and P. Schmeer, IAU Circ. 8821, 4 (2007).

    ADS  Google Scholar 

  42. S. Howell, R. Fried, P. Szkody, M. Sirk, and G. Schmidt, Publ. Astron. Soc. Pacif. 114, 748 (2002).

    Article  ADS  Google Scholar 

  43. G. Hurst, D. McAdam, M. Mobberley, and N. James, IAU Circ. 4570, 2 (1988).

  44. D. Jack, K.-P. Schröder, P. Eenens, U. Wolter, J. González-Pérez, J. Schmitt, et al., Astron. Nachr. 341, 781 (2020).

    Article  ADS  Google Scholar 

  45. M. Kato and I. Hachisu, Astrophys. J. 437, 802 (1994).

    Article  ADS  Google Scholar 

  46. E. Kazarovets, IAU Circ. 9247, 3 (2011).

  47. J. Krautter, H. Oegelman, S. Starrfield, R. Wichmann, and E. Pfeffermann, Astrophys. J. 456, 788 (1996).

    Article  ADS  Google Scholar 

  48. A. Kurtenkov, T. Tomov, and P. Pessev, Astron. Telegram 10527, 1 (2017).

    Google Scholar 

  49. Y. Kuwano, K. Ishida, K. Ichimura, M. Mattei, J. Ashbrook, M. Seslar, et al., IAU Circ. 2340, 1 (1971).

    ADS  Google Scholar 

  50. K.-L. Li, B. Metzger, L. Chomiuk, I. Vurm, J. Strader, T. Finzell, et al., Nat. Astron. 1, 697 (2017).

    Article  ADS  Google Scholar 

  51. K. Long, D. Helfand, and D. Grabelsky, Astrophys. J. 248, 925 (1981).

    Article  ADS  Google Scholar 

  52. D. Lynch, R. Rudy, S. Mazuk, and R. Puetter, Astrophys. J. 541, 791 (2000).

    Article  ADS  Google Scholar 

  53. H. Maehara, K. Taguchi, Y. Tampo, N. Kojiguchi, and K. Isogai, Astron. Telegram 14471, 1 (2021).

    ADS  Google Scholar 

  54. S. Mazuk, D. Lynch, R. Rudy, R. Russell, R. Pearson, C. Woodward, et al., IAU Circ. 8848, 1 (2007).

    ADS  Google Scholar 

  55. B. Metzger, R. Hascoët, I. Vurm, A. Beloborodov, L. Chomiuk, J. Sokoloski, et al., Mon. Not. R. Astron. Soc. 442, 713 (2014).

    Article  ADS  Google Scholar 

  56. F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 132, 143 (1984).

    ADS  Google Scholar 

  57. F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 288, 175 (1994).

    ADS  Google Scholar 

  58. S. Milbourn, G. Alcock, E. Harlan, and M. Phillips, IAU Circ. 2997, 1 (1976).

  59. K. Mukai, A. Kinkhabwala, J. Peterson, S. Kahn, and F. Paerels, Astrophys. J. Lett. 586, L77 (2003).

    Article  ADS  Google Scholar 

  60. K. Mukai, E. Zietsman, and M. Still, Astrophys. J. 707, 652 (2009).

    Article  ADS  Google Scholar 

  61. U. Munari, F.-J. Hambsch, A. Frigo, F. Castellani, G. la Mura, G. Traven, et al., Astron. Telegram 10572, 1 (2017).

    Google Scholar 

  62. U. Munari, P. Valisa, F.-J. Hambsch, and A. Frigo, Astron. Telegram 11940, 1 (2018).

    ADS  Google Scholar 

  63. U. Munari, S. Moretti, and A. Maitan, Astron. Astrophys. 639, L10 (2020).

    Article  ADS  Google Scholar 

  64. U. Munari, P. Valisa, and S. Dallaporta, Astron. Telegram 14704, 1 (2021).

    ADS  Google Scholar 

  65. R. Mushotzky and A. Szymkowiak, in Cooling Flows in Clusters and Galaxies, Ed. by A. Fabian, Vol. 229 of NATO Adv. Study Inst., Ser. C (Springer, Berlin, 1988), p. 53.

  66. S. Nakano, K. Takamizawa, R. Kushida, Y. Kushida, and T. Kato, IAU Circ. 6941, 1 (1998).

  67. S. Nakano, J. Beize, Z.-W. Jin, X. Gao, H. Yamaoka, K. Haseda, et al., IAU Circ. 8934, 1 (2008).

    ADS  Google Scholar 

  68. J.-U. Ness, G. Schwarz, A. Retter, S. Starrfield, J. Schmitt, N. Gehrels, et al., Astrophys. J. 663, 505 (2007).

    Article  ADS  Google Scholar 

  69. J.-U. Ness, G. Schwarz, S. Starrfield, J. Osborne, K. Page, A. Beardmore, et al., Astron. J. 135, 1328 (2008).

    Article  ADS  Google Scholar 

  70. J.-U. Ness, J. Osborne, A. Dobrotka, K. Page, J. Drake, C. Pinto, et al., Astrophys. J. 733, 70 (2011).

    Article  ADS  Google Scholar 

  71. J. U. Ness, V. P. Goranskij, K. L. Page, J. Osborne, and G. Schwarz, Astron. Telegram 8053, 1 (2015).

    ADS  Google Scholar 

  72. K. Nomoto, Astrophys. J. 253, 798 (1982).

    Article  ADS  Google Scholar 

  73. K. Nomoto, H. Saio, M. Kato, and I. Hachisu, Astrophys. J. 663, 1269 (2007).

    Article  ADS  Google Scholar 

  74. H. Oegelman, M. Orio, J. Krautter, and S. Starrfield, Nature (London, U.K.) 361, 331 (1993).

    Article  ADS  Google Scholar 

  75. M. Orio, J. Covington, and H. Ögelman, Astron. Astrophys. 373, 542 (2001).

    Article  ADS  Google Scholar 

  76. A. Özdönmez, T. Güver, A. Cabrera-Lavers, and T. Ak, Mon. Not. R. Astron. Soc. 461, 1177 (2016).

    Article  ADS  Google Scholar 

  77. A. Özdönmez, E. Ege, T. Güver, and T. Ak, Mon. Not. R. Astron. Soc. 476, 4162 (2018).

    Article  ADS  Google Scholar 

  78. K. Page, N. Kuin, A. Beardmore, F. Walter, J. Osborne, C. Markwardt, et al., Mon. Not. R. Astron. Soc. 499, 4814 (2020).

    Article  ADS  Google Scholar 

  79. D. Pandel, F. Córdova, K. Mason, and W. Priedhorsky, Astrophys. J. 626, 396 (2005).

    Article  ADS  Google Scholar 

  80. J. Panei, L. Althaus, and O. Benvenuto, Astron. Astrophys. 353, 970 (2000).

    ADS  Google Scholar 

  81. J. Patterson and J. Raymond, Astrophys. J. 292, 535 (1985a).

    Article  ADS  Google Scholar 

  82. J. Patterson and J. Raymond, Astrophys. J. 292, 550 (1985b).

    Article  ADS  Google Scholar 

  83. M. Pavlinsky, V. Akimov, V. Levin, I. Lapshov, A. Tkachenko, N. Semena, et al., SPIE Conf. Ser. 8147, 814706 (2011).

  84. W. Pietsch, J. Fliri, M. Freyberg, J. Greiner, F. Haberl, A. Riffeser, et al., Astron. Astrophys. 442, 879 (2005).

    Article  ADS  Google Scholar 

  85. R. Poggiani, New Astron. 13, 557 (2008).

    Article  ADS  Google Scholar 

  86. R. Poggiani, Astron. Nachr. 330, 77 (2009).

    Article  ADS  Google Scholar 

  87. R. Poggiani, New Astron. 15, 657 (2010).

    Article  ADS  Google Scholar 

  88. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  89. D. Prialnik and A. Kovetz, Astrophys. J. 445, 789 (1995).

    Article  ADS  Google Scholar 

  90. J. Pringle, Mon. Not. R. Astron. Soc. 178, 195 (1977).

    Article  ADS  Google Scholar 

  91. T. Prusti, J. de Bruijne, A. Brown, A. Vallenari, C. Babusiaux, et al. (Gaia Collab.), Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  92. R. Puebla, M. Diaz, and I. Hubeny, Astron. J. 134, 1923 (2007).

    Article  ADS  Google Scholar 

  93. G. Ramsay and M. Cropper, Mon. Not. R. Astron. Soc. 347, 497 (2004).

    Article  ADS  Google Scholar 

  94. G. Ramsay, M. Cropper, and K. Mason, Mon. Not. R. Astron. Soc. 278, 285 (1996).

    Article  ADS  Google Scholar 

  95. R. Rudy, D. Lynch, R. Russell, and C. Woodward, IAU Circ. 8884, 2 (2007).

  96. N. Samus, IAU Circ. 8832, 3 (2007).

  97. B. Schaefer, Astrophys. J. Suppl. Ser. 187, 275 (2010).

    Article  ADS  Google Scholar 

  98. G. J. Schwarz, J.-U. Ness, J. Osborne, K. Page, P. Evans, A. P. Beardmore, et al., Astrophys. J. Suppl. Ser. 197, 31 (2011).

    Article  ADS  Google Scholar 

  99. P. Selvelli, Baltic Astron. 13, 93 (2004).

    ADS  Google Scholar 

  100. P. Selvelli and R. Gilmozzi, Astron. Astrophys. 560, A49 (2013).

    Article  ADS  Google Scholar 

  101. A. Shafter, Astrophys. J. 487, 226 (1997).

    Article  ADS  Google Scholar 

  102. N. Shakura and R. Sunyaev, Adv. Space Res. 8, 135 (1988).

    Article  ADS  Google Scholar 

  103. L. Shanley, H. Ogelman, J. Gallagher, M. Orio, and J. Krautter, Astrophys. J. Lett. 438, L95 (1995).

    Article  ADS  Google Scholar 

  104. A. Skopal, Astrophys. J. 878, 28 (2019).

    Article  ADS  Google Scholar 

  105. A. Slavin, T. O’Brien, and J. Dunlop, Mon. Not. R. Astron. Soc. 276, 353 (1995).

    Article  ADS  Google Scholar 

  106. M. Soraisam, M. Gilfanov, W. Wolf, and L. Bildsten, Mon. Not. R. Astron. Soc. 455, 668 (2016).

    Article  ADS  Google Scholar 

  107. K. Stanek, C. Kochanek, J. Brown, T.-S. Holoien, J. Shields, B. J. Shappee, et al., Astron. Telegram 9669, 1 (2016).

    ADS  Google Scholar 

  108. S. Starrfield, in The Classical Novae, Ed. by M. Bode and A. Evans (Wiley, New York, 1989), p. 39.

    Google Scholar 

  109. S. Starrfield, F. Timmes, W. Hix, C. Iliadis, W. Arnett, C. Meakin, et al., in Binary Paths to Type Ia Supernovae Explosions, Ed. by R. Di Stefano, M. Orio, and M. Moe, IAU Symp. Proc. 281, 166 (2013).

  110. D. Steeghs, S. Howell, C. Knigge, B. Gänsicke, E. Sion, and W. Welsh, Astrophys. J. 667, 442 (2007).

    Article  ADS  Google Scholar 

  111. R. di Stefano and A. Kong, Astrophys. J. 592, 884 (2003).

    Article  ADS  Google Scholar 

  112. R. di Stefano and A. Kong, Astrophys. J. 609, 710 (2004).

    Article  ADS  Google Scholar 

  113. J. Strader, L. Chomiuk, E. Aydi, A. Kawash, J. Miller, K. Sokolovsky, et al., Astron. Telegram 13047, 1 (2019).

    ADS  Google Scholar 

  114. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., arXiv: 2104.13267 (2021).

  115. D. Swartz, K. Ghosh, V. Suleimanov, A. Tennant, and K. Wu, Astrophys. J. 574, 382 (2002).

    Article  ADS  Google Scholar 

  116. C. Tappert, D. Barria, I. Fuentes Morales, N. Vogt, A. Ederoclite, and L. Schmidtobreick, Mon. Not. R. Astron. Soc. 462, 1371 (2016).

    Article  ADS  Google Scholar 

  117. J. Thorstensen, Astron. J. 126, 3017 (2003).

    Article  ADS  Google Scholar 

  118. J. Trümper, G. Hasinger, B. Aschenbach, H. Bräuninger, U. Briel, W. Burkert, et al., Nature (London, U.K.) 349, 579 (1991).

    Article  ADS  Google Scholar 

  119. R. Tylenda, Acta Astron. 31, 267 (1981).

    ADS  Google Scholar 

  120. K. Vanlandingham, G. Schwarz, S. Starrfield, C. Woodward, M. Wagner, J. Ness, et al., AAS Meeting Abstracts 210, 04.02 (2007).

  121. E. O. Waagen, AAVSO Alert Notice 724, 1 (2020).

    ADS  Google Scholar 

  122. Q. Wada, M. Tsujimoto, K. Ebisawa, and T. Hayashi, Publ. Astron. Soc. Jpn. 69, 10 (2017).

    Article  ADS  Google Scholar 

  123. R. Wagner, D. Terndrup, M. Darnley, S. Starrfield, C. Woodward, and M. Henze, Astron. Telegram 11588, 1 (2018).

    ADS  Google Scholar 

  124. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  125. A. Weight, A. Evans, T. Naylor, J. Wood, and M. Bode, Mon. Not. R. Astron. Soc. 266, 761 (1994).

    Article  ADS  Google Scholar 

  126. J. Whelan and J. I. Iben, Astrophys. J. 186, 1007 (1973).

    Article  ADS  Google Scholar 

  127. S. Williams, M. Darnley, and M. Healy, Astron. Telegram 11928, 1 (2018).

    ADS  Google Scholar 

  128. S. Williams, M. Darnley, M. Healy, F. Murphy-Glaysher, and C. Ransome, Astron. Telegram 13241, 1 (2019).

    ADS  Google Scholar 

  129. J. Wilms, A. Allen, and R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

  130. W. Wolf, L. Bildsten, J. Brooks, and B. Paxton, Astrophys. J. 777, 136 (2013).

    Article  ADS  Google Scholar 

  131. O. Yaron, D. Prialnik, M. Shara, and A. Kovetz, Astrophys. J. 623, 398 (2005).

    Article  ADS  Google Scholar 

  132. P. Zemko, K. Mukai, and M. Orio, Astrophys. J. 807, 61 (2015).

    Article  ADS  Google Scholar 

  133. P. Zemko, M. Orio, K. Mukai, A. Bianchini, S. Ciroi, and V. Cracco, Mon. Not. R. Astron. Soc. 460, 2744 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Galiullin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiullin, I.I., Gilfanov, M.R. X-ray Observations of Historical Classical Nova Counterparts with eROSITA Telescope Onboard the SRG Orbital Observatory during the All-Sky Survey. Astron. Lett. 47, 587–606 (2021). https://doi.org/10.1134/S1063773721090048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721090048

Keywords:

Navigation