Skip to main content
Log in

Annihilation of \(\mathbf{{}^{22}}\)Na Positrons in Novae

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

For the first time we have explored the effects of the magnetic field in a nova shell on the escape of positrons from the radioactive isotope \({}^{22}\)Na and on the evolution of the flux in the 511 keV annihilation line. We show that for a white dwarf surface magnetic field \({\sim}10^{6}\) G the magnetic field in an expanding nova shell is able to significantly impede the positron escape and to increase the emission time in the 511 keV line to hundreds of days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. S. P. Ahlen, Rev. Mod. Phys. 52, 121 (1980).

    Article  ADS  Google Scholar 

  2. J. Casanova, J. José, and S. Shore, Astron. Astrophys. 619, 121 (2018).

    Article  ADS  Google Scholar 

  3. A. Cassatella, H. J. G. L. M. Lamers, C. Rossi, et al., Astron. Astrophys. 420, 571 (2004).

    Article  ADS  Google Scholar 

  4. F. Cattaneo, T. Emonet, and N. Weiss, Astrophys. J. 588, 1183 (2003).

    Article  ADS  Google Scholar 

  5. B. D. G. Chandran and J. L. Maron, Astrophys. J. 602, 170 (2004).

    Article  ADS  Google Scholar 

  6. L. Chomiuk, B. D. Metzger, and K. J. Shen, arXiv201108751 (2020).

  7. E. Churazov and I. Khabibulin, Mon. Not. R. Astron. Soc. 480, 1394 (2018).

    Article  ADS  Google Scholar 

  8. D. D. Clayton and F. Hoyle, Astrophys. J. 187, L101 (1974).

    Article  ADS  Google Scholar 

  9. C. J. Crannell, G. Joyce, and R. Ramaty, Astrophys. J. 210, 582 (1976).

    Article  ADS  Google Scholar 

  10. P. A. Denissenkov, J. W. Truran, and M. Pignatari, et al., Mon. Not. R. Astron. Soc. 442, 2058 (2014).

    Article  ADS  Google Scholar 

  11. N. Epelstain, O. Yaron, A. Kovetz, and D. Prialnik, Mon. Not. R. Astron. Soc. 374, 1449 (2007).

    Article  ADS  Google Scholar 

  12. G. J. Ferland and G. A. Shields, Astrophys. J. 226, 172 (1978).

    Article  ADS  Google Scholar 

  13. L. Ferrario, D. Wickramasinghe, and A. Kawka, Adv. Space Res. 66, 1025 (2020).

    Article  ADS  Google Scholar 

  14. R. B. Firestone, V. S. Shirley, C. M. Baglin, et al., Table of Isotopes (Wiley, New York, 1999).

    Google Scholar 

  15. C. D. Gill and T. J. O’Brien, Mon. Not. R. Astron. Soc. 314, 175 (2000).

    Article  ADS  Google Scholar 

  16. J. Gomez-Gomar, M. Hernanz, J. Jose, and J. Isern, Mon. Not. R. Astron. Soc. 296, 913 (1998).

    Article  ADS  Google Scholar 

  17. A. F. Iyudin, Astron. Rep. 54, 611 (2010).

    Article  ADS  Google Scholar 

  18. A. F. Iyudin, K. Bennett, H. Bloemen, et al., Astron. Astrophys. 300, 422 (1995).

    ADS  Google Scholar 

  19. S. G. Karshenboim, Int. J. Mod. Phys. A 19, 3879 (2004).

    Article  ADS  Google Scholar 

  20. M. Kato and I. Hachisu, Astrophys. J. 657, 1004 (2007).

    Article  ADS  Google Scholar 

  21. R. I. Klein, C. F. McKee, and P. Colella, Astrophys. J. 420, 213 (1994).

    Article  ADS  Google Scholar 

  22. R. P. Kraft, Astrophys. J. 139, 457 (1964).

    Article  ADS  Google Scholar 

  23. A. D. Kudryashov, INASAN Sci. Rep. 3, 205 (2019).

    Google Scholar 

  24. M. D. Leising and D. D. Clayton, Astrophys. J. 323, 159 (1987).

    Article  ADS  Google Scholar 

  25. A. Marcowith, M. Lemoine, and G. Pelletier, Astron. Astrophys. 453, 193 (2006).

    Article  ADS  Google Scholar 

  26. E. R. Mustel and L. I. Baranova, Sov. Astron. 10, 388 (1966).

    ADS  Google Scholar 

  27. R. Narayan and M. V. Medvedev, Astrophys. J. 562, L129 (2001).

    Article  ADS  Google Scholar 

  28. A. F. Pala, B. T. Gänsicke, E. Breedt, et al., Mon. Not. R. Astron. Soc. 494, 3799 (2020).

    Article  ADS  Google Scholar 

  29. J. Patterson, Publ. Astron. Soc. Pacif. 106, 209 (1994).

    Article  ADS  Google Scholar 

  30. C. L. N. Ruggles and G. T. Bath, Astron. Astrophys. 80, 97 (1979).

    ADS  Google Scholar 

  31. A. A. C. Sander, J. S. Vink, and W.-R. Hamann, Mon. Not. R. Astron. Soc. 491, 2206 (2020).

    Google Scholar 

  32. M. M. Shara and D. Prialnik, Astron. J. 107, 1542 (1994).

    Article  ADS  Google Scholar 

  33. T. Siegert, R. Diehl, A. C. Vincent, et al., Astron. Astrophys. 595, 25 (2016).

    Article  Google Scholar 

  34. W. M. Sparks, S. Starrfield, and J. W. Truran, Astrophys. J. 208, 819 (1976).

    Article  ADS  Google Scholar 

  35. S. Starrfield, W. M. Sparks, and J. W. Truran, Astrophys. J. 303, 186 (1986).

    Article  Google Scholar 

  36. S. Starrfield, M. Bose, C. Iliadis, et al., Astrophys. J. 895, 70 (2020).

    Article  ADS  Google Scholar 

  37. L. Takeda and M. Diaz, Publ. Astron. Soc. Pacif. 131, 54205 (2019).

    Article  ADS  Google Scholar 

  38. H. Xiao, W. Hajdas, B. Wu, et al., Astropart. Phys. 103, 74 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

N.N. Chugai is grateful to E.M. Churazov and A.V. Getling for the stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Chugai.

Additional information

Translated by N. Chugai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugai, N.N., Kudryashov, A.D. Annihilation of \(\mathbf{{}^{22}}\)Na Positrons in Novae. Astron. Lett. 47, 197–203 (2021). https://doi.org/10.1134/S1063773721040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721040046

Keywords:

Navigation