Skip to main content
Log in

Ice Permafrost ‘‘Oases’’ Close to Martian Equator: Planet Neutron Mapping Based on Data of FREND Instrument Onboard TGO Orbiter of Russian-European ExoMars Mission

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the first results of Mars neutron sounding by FREND instrument onboard ESA’s Trace Gas Orbiter data analysis. Neutron flux mapping is performed with high spatial resolution, which allows to match epithermal neutron flux variation with relief’s geomorphological structures. Local regions with suppressed neutron flux indicate the presence of considerable amount of hydrogen atoms in the surface material, which is supposedly part of water molecules. Local regions in the equatorial latitudes of the planet with significant decrease of neutron flux are discovered, which points to large mass fraction of water ice in the soil material, ranging from tens to 100\(\%\). Considering high water content, these regions are named ice permafrost ‘‘oases.’’ Estimates of ice mass fraction for 7 such regions are obtained based on neutron measurements analysis and end-to-end numerical modeling of the entire physical process of neutron sounding by FREND on Mars orbit. Possible reasons for formation of such ‘‘oases’’ and their significance for future Mars exploration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. A. T. Basilevsky, S. C. Werner, and G. Neukum, Geophys. Res. Lett. 33, L13201 (2006).

    Article  ADS  Google Scholar 

  2. F. V. de Blasio, Earth Planet. Sci. Lett. 312, 126 (2011).

    Article  ADS  Google Scholar 

  3. W. V. Boynton, G. J. Taylor, and L. G. Evans, J. Geophys. Res. 112, E12S99 (2007a).

    ADS  Google Scholar 

  4. W. V. Boynton, W. C. Feldman, and S. W. Squyres, Science (Washington, DC, U. S.) 297, 81 (2007b).

    Article  Google Scholar 

  5. B. A. Bradley, S. E. H.Sakimoto, and H. Frey, J. Geophys. Res. E 107, 2-1 (2002).

    Article  Google Scholar 

  6. J. Carter, F. Poulet, and J.-P. Bibring, J. Geophys. Res.: Planets 118, 831 (2013).

    Article  ADS  Google Scholar 

  7. D. M. Drake, W. C. Feldman, and B. M. Jakosky, J. Geophys. Res. 93, 6353 (1988).

    Article  ADS  Google Scholar 

  8. A. G. Fairén, J. M. Dohm, and E. R. Uceda, Planet. Space Science 53, 1355 (2005).

    Article  ADS  Google Scholar 

  9. C. I. Fialips, J. W. Carey, and D. T. Vaniman, Icarus 178, 74 (2005).

    Article  ADS  Google Scholar 

  10. F. Forget, K. M. Haberle, and F. Montmessin, Science (Washington, DC, U. S.) 311, 368 (2006).

    Article  ADS  Google Scholar 

  11. R. Gellert and B. C. Clark, Elements 11, 39 (2015).

    Article  Google Scholar 

  12. M. Gourronc, O. Bourgeois, and D. Mège, Geomorphology 204, 235 (2014).

    Article  ADS  Google Scholar 

  13. J. P. Grotzinger, Science (washington, DC, U. S.) 343, 386 (2014).

  14. B. M. Jakosky, M. T. Mellon, and E. S. Varnes, Icarus 175, 58 (2005).

    Article  ADS  Google Scholar 

  15. D. A. van der Kolk, K. L. Trib-Bett, and E. B. Grosfils, in Proceedings of the 32nd Annual Lunar and Planetary Scientific Conference (2001), p. 1085.

  16. M. L. Litvak, I. G. Mitrofanov, A. S. Kozyrev, et al., J. Geophys. Res. 112, E03S13 (2007).

    Google Scholar 

  17. S. Maurice, W. Feldman, and B. Diez, J. Geophys. Res., E 116, E11008 (2011).

  18. C. P. McKay and C. R. Stoker, Rev. Geophys. 27, 189 (1989).

    Article  ADS  Google Scholar 

  19. I. G. Mitrofanov, D. Anifimov, A. Kozyrev, et al., Science (Washington, DC, U. S.) 297, 78 (2002).

    Article  ADS  Google Scholar 

  20. I. G. Mitrofanov, M. L. Litvak, A. S. Kozyrev, et al., Solar Syst. Res. 38, 253 (2004).

    Article  ADS  Google Scholar 

  21. I. G. Mitrofanov, A. B. Sanin, D. V. Golovin, M. L. Litvak, A. A. Konovalov, A. S. Kozyrev, A. V. Malakhov, M. I. Mokrousov, et al., Astrobiology 8, 793 (2008).

    Article  ADS  Google Scholar 

  22. I. G. Mitrofanov, A. Malakhov, B. Bakhtin, D. Golovin, A. Kozyrev, M. Litvak, M. Mokrousov, A. Sanin, et al., Space Sci. Rev. 214, 86 (2018).

    Article  ADS  Google Scholar 

  23. A. M. Palumbo and J. W. Head, Geophys. Res. Lett. 45, 10249 (2018).

    Article  ADS  Google Scholar 

  24. J. A. P. Rodriguez, S. Sasaki, and R. O. Kuzmin, Icarus 175, 36 (2005).

    Article  ADS  Google Scholar 

  25. P. H. Schultz and A. B. Lutz, Icarus 73, 91 (1988).

    Article  ADS  Google Scholar 

  26. D. E. Smith, M. T. Zuber, and H. V. Frey, J. Geophys. Res. E 106, 23689 (2001).

    Article  ADS  Google Scholar 

  27. J. Vago, O. Witasse, and H. Svedhem, Solar Syst. Res. 49, 518 (2015).

    Article  ADS  Google Scholar 

  28. J. Vaucher, D. Baratoux, and N. Mangold, Icarus 204, 418 (2009).

    Article  ADS  Google Scholar 

  29. M. Vincendon, F. Forget, and J. Mustard, J. Geophys. Res. 115, E10001 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

The work described in this article was supported by a grant no. 19-72-10144 from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malakhov.

Additional information

Translated by the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, A.V., Mitrofanov, I.G., Litvak, M.L. et al. Ice Permafrost ‘‘Oases’’ Close to Martian Equator: Planet Neutron Mapping Based on Data of FREND Instrument Onboard TGO Orbiter of Russian-European ExoMars Mission. Astron. Lett. 46, 407–421 (2020). https://doi.org/10.1134/S1063773720060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720060079

Keywords:

Navigation