Skip to main content
Log in

Galactic Rotation Parameters Based on Stars from Active Star-Forming Regions with Data from the Gaia DR2 Catalogue

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have studied a sample of more than 25 000 young stars with proper motions and trigonometric parallaxes from the Gaia DR2 catalogue. The relative errors of their parallaxes do not exceed 10\(\%\). The selection of stars belonging to active star-forming regions was made by Marton et al. based on data from the Gaia DR2 catalogue by invoking infrared measurements from the WISE and Planck catalogues. Low-mass T Tauri stars constitute the majority of sample stars. The following parameters of the angular velocity of Galactic rotation have been found from them: \(\Omega_{0}=28.40\pm 0.11\) km s\({}^{-1}\) kpc\({}^{-1}\), \(\Omega^{\prime}_{0}=-3.933\pm 0.033\) km s\({}^{-1}\) kpc\({}^{-2}\), and \(\Omega^{\prime\prime}_{0}=0.804\pm 0.040\) km s\({}^{-1}\) kpc\({}^{-3}\). The Oort constants are \(A=15.73\pm 0.32\) km s\({}^{-1}\) kpc\({}^{-1}\) and \(B=-12.67\pm 0.34\) km s\({}^{-1}\) kpc\({}^{-1}\), while the circular rotation velocity of the solar neighborhood around the Galactic center is \(V_{0}=227\pm 4\) km s\({}^{-1}\) for the adopted Galactocentric distance of the Sun \(R_{0}=8.0\pm 0.15\) kpc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. R. Abuter, A. Amorim, N. Bauböck, J. P. Berger, H. Bonnet, W. Brandner, Y. Clénet, V. Coudé du Foresto, et al. (Gravity Collab.), Astron. Astrophys. 625, L10 (2019).

    Article  ADS  Google Scholar 

  2. R. Adam, P. A. R. Ade, N. Aghanim, M. I. R. Alves, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, et al. (Planck Collab.), Astron. Astrophys. 594, 10 (2016).

    Article  Google Scholar 

  3. F. Arenou, X. Luri, C. Babusiaux, C. Fabricius, A. Helmi, T. Muraveva, A. C. Robin, F. Spoto, et al. (Gaia Collab.), Astron. Astrophys. 616, 17 (2018).

    Article  Google Scholar 

  4. L. A. Balona and M. W. Feast, Mon. Not. R. Astron. Soc. 167, 621 (1973).

    Article  ADS  Google Scholar 

  5. A. Blaauw, Ann. Rev. Astron. Astrophys. 2, 213 (1964).

    Article  ADS  Google Scholar 

  6. V. V. Bobylev, Astron. Lett. 46, 131 (2020).

    Article  ADS  Google Scholar 

  7. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 441, 142 (2014).

    Article  ADS  Google Scholar 

  8. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 41, 473 (2015).

    Article  ADS  Google Scholar 

  9. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 44, 184 (2018).

    Article  ADS  Google Scholar 

  10. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 208 (2019a).

    Article  ADS  Google Scholar 

  11. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 331 (2019b).

    Article  ADS  Google Scholar 

  12. J. Bovy, Mon. Not. R. Astron. Soc. 468, L63 (2017).

    Article  ADS  Google Scholar 

  13. A. G. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, F. Mignard, R. Drimmel, C. Babusiaux, C. A. L. Bailer-Jones, et al. (Gaia Collab.), Astron. Astrophys. 595, 2 (2016).

    Google Scholar 

  14. A. G. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, et al. (Gaia Collab.), Astron. Astrophys. 616, 1 (2018).

    Google Scholar 

  15. J. Byl and M. W. Ovenden, Astrophys. J. 225, 496 (1978).

    Article  ADS  Google Scholar 

  16. T. Camarillo, M. Varun, M. Tyler, and R. Bharat, Publ. Astron. Soc. Pacif. 130, 4101 (2018).

    Article  Google Scholar 

  17. F. Comeron, J. Torra, and A. E. Gomez, Astron. Astrophys. 286, 789 (1994).

    ADS  Google Scholar 

  18. R. M. Cutri, E. L. Wright, T. Conrow, J. Bauer, D. Benford, H. Brandenburg, J. Dailey, et al., VizieR On-line Data Catalog: II/311 (2013). http://wise2.ipac.caltech.edu/docs/release/allsky/- expsup/index.html.

  19. A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Astron. Lett. 27, 58 (2001).

    Article  ADS  Google Scholar 

  20. T. Do, A. Hees, A. Ghez, G. D. Martinez, D. S. Chu, S. Jia, S. Sakai, J. R. Lu, et al., Science (Washington, DC, U. S.) 365, 664 (2019).

    Article  ADS  Google Scholar 

  21. M. Feast and P. Whitelock, Mon. Not. R. Astron. Soc. 291, 683 (1997).

    Article  ADS  Google Scholar 

  22. D. Fernández, F. Figueras, and J. Torra, Astron. Astrophys. 372, 833 (2001).

    Article  ADS  Google Scholar 

  23. J. A. Frogel, and R. Stothers, Astron. J. 82, 890 (1977).

    Article  ADS  Google Scholar 

  24. Y. M. Georgelin and Y. P. Georgelin, Astron. Astrophys. 49, 57 (1976).

    ADS  Google Scholar 

  25. R. de Grijs and G. Bono, Astrophys. J. Suppl. Ser. 232, 22 (2017).

    Article  ADS  Google Scholar 

  26. T. Hirota, T. Nagayama, M. Honma, Y. Adachi, R. A. Burns, J. O. Chibueze, Y. K. Choi, K. Hachisuka, et al., arXiv: 2002.03089 (2020).

  27. F. J. Kerr and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 221, 1023 (1986).

    Article  ADS  Google Scholar 

  28. C. Li, G. Zhao, and C. Yang, Astrophys. J. 872, 205 (2019).

    Article  ADS  Google Scholar 

  29. C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).

    Article  ADS  Google Scholar 

  30. L. Lindegren, J. Hernandez, A. Bombrun, S. Klioner, U. Bastian, M. Ramos-Lerate, A. de Torres, H. Steidelmuller, et al. (Gaia Collab.), Astron. Astrophys. 616, 2 (2018).

    Article  Google Scholar 

  31. G. Marton, P. Ábrahám, E. Szegedi-Elek, J. Varga, M. Kun, Á. Kóspál, E. Varga-Verebélyi, S. Hodgkin, et al., Mon. Not. R. Astron. Soc. 487, 2522 (2019).

    Article  ADS  Google Scholar 

  32. A. M. Mel’nik and A. K. Dambis, Astron. Rep. 62, 998 (2018).

    Article  ADS  Google Scholar 

  33. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Astron. Lett. 27, 521 (2001).

    Article  ADS  Google Scholar 

  34. J. M. Mohr and P. Mayer, Bull. Astron. Inst. Czechosl. 8, 142 (1957).

    ADS  Google Scholar 

  35. R. P. Olling and W. Dehnen, Astrophys. J. 599, 275 (2003).

    Article  ADS  Google Scholar 

  36. J. H. Oort, Bull. Astron. Inst. Netherlands, 3, 2750 (1927).

    Google Scholar 

  37. J. S. Plaskett and J. A. Pearce, Mon. Not. R. Astron. Soc. 69, 80 (1934).

    Google Scholar 

  38. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, et al. (Gaia Collab.), Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  39. A. S. Rastorguev, M. V. Zabolotskikh, A. K. Dambis, N. D. Utkin, V. V. Bobylev, and A. T. Bajkova, Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  40. M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. Dame, Y. Xu, J. Li, N. Sakai, et al., Astrophys. J. 885, 131 (2019).

    Article  ADS  Google Scholar 

  41. A. G. Riess, S. Casertano, W. Yuan, L. Macri, B. Bucciarelli, M. G. Lattanzi, J. W. MacKenty, J. B. Bowers, et al., Astrophys. J. 861, 126 (2018).

    Article  ADS  Google Scholar 

  42. C. V. Rubin and J. Burley, Astron. J. 69, 80 (1964).

    Article  ADS  Google Scholar 

  43. D. Russeil, Astron. Astrophys. 397, 133 (2003).

    Article  ADS  Google Scholar 

  44. R. Schönrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  45. J. Torra, D. Fernández, and F. Figueras, Astron. Astrophys. 359, 82 (2000).

    ADS  Google Scholar 

  46. J. P. Vallée, Astrophys. Space Sci. 362, 79 (2017).

    Article  ADS  Google Scholar 

  47. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astrophys. J. 140, 1868 (2010).

    Google Scholar 

  48. Y. Xu, S. B. Bian, M. J. Reid, J. J. Li, B. Zhang, Q. Z. Yan, T. M. Dame, K. M. Menten, et al., Astron. Astrophys. 616, L15 (2018).

    Article  ADS  Google Scholar 

  49. L. N. Yalyalieva, A. A. Chemel’, E. V. Glushkova, A. K. Dambis, and A. D. Klinichev, Astrophys. Bull. 73, 335 (2018).

    Article  ADS  Google Scholar 

  50. M. V. Zabolotskikh, A. S. Rastorguev, and A. K. Dambis, Astron. Lett. 28, 454 (2002).

    Article  ADS  Google Scholar 

  51. E. Zari, H. Hashemi, A. G. A. Brown, K. Jardine, and P. T. de Zeeuw, Astron. Astrophys. 620, 172 (2018).

    Article  ADS  Google Scholar 

  52. P. T. de Zeeuw, R. Hoogerwerf, J. H. J. de Bruijne, A. G. A. Brown, and A. Blaauw, Astron. J. 117, 354 (1999).

    Article  ADS  Google Scholar 

  53. J. C. Zinn, M. H. Pinsonneault, D. Huber, and D. Stello, arXiv: 1805.02650 (2018).

Download references

ACKNOWLEDGMENTS

We are grateful to the referee for the useful remarks that contributed to an improvement of the paper.

Funding

This work was supported in part by Program KP19–270 of the Presidium of the Russian Academy of Sciences ‘‘Questions of the Origin and Evolution of the Universe with the Application of Methods of Ground-Based Observations and Space Research.’’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Krisanova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krisanova, O.I., Bobylev, V.V. & Bajkova, A.T. Galactic Rotation Parameters Based on Stars from Active Star-Forming Regions with Data from the Gaia DR2 Catalogue. Astron. Lett. 46, 370–378 (2020). https://doi.org/10.1134/S1063773720060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720060067

Keywords:

Navigation