Skip to main content
Log in

Multiple X-ray bursts and the model of a spreading layer of accreting matter over the neutron star surface

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We report the detection of series of close type I X-ray bursts consisting of two or three events with a recurrence time much shorter than the characteristic (at the observed mean accretion rate) time of matter accumulation needed for a thermonuclear explosion to be initiated on the neutron star surface during the JEM-X/INTEGRAL observations of several X-ray bursters. We show that such series of bursts are naturally explained in the model of a spreading layer of accreting matter over the neutron star surface in the case of a sufficiently high ( ≳ 1 × 10−9 M yr−1) accretion rate (corresponding to a mean luminosity L tot ≳ 1 × 1037erg s−1). The existence of triple bursts requires some refinement of the model—the importance of a central ring zone is shown. In the standard model of a spreading layer no infall of matter in this zone is believed to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. P. Babushkina, L. S. Bratolyubova-Tsulukudze, M. I. Kudryavtsev, A. S. Melioranskii, I. A. Savenko, and B. I. Yushkov, Sov. Astron. Lett. 1, 20 (1975).

    Google Scholar 

  2. R. D. Belian, J. P. Conner, and W. D. Evans, Astrophys. J. 171, L87 (1972).

    Article  ADS  Google Scholar 

  3. R. D. Belian, J. P. Conner, and W. D. Evans, Astrophys. J. 206, L135 (1976).

    Article  ADS  Google Scholar 

  4. S. Bhattacharyya and T. E. Strohmayer, Astrophys. J. 636, L121 (2006).

    Article  ADS  Google Scholar 

  5. L. Bildsten, Astrophys. J. 438, 852 (1995).

    Article  ADS  Google Scholar 

  6. L. Boirin, L. Keek, M. Méndez, A. Cumming, J. J. M. in’t Zand, J. Cottam, F. Paerels, and W. H. G. Lewin, Astron. Astrophys. 465, 559 (2007).

    Article  ADS  Google Scholar 

  7. I. V. Chelovekov and S. A. Grebenev, Astron. Lett. 33, 807 (2007).

    Article  ADS  Google Scholar 

  8. I. V. Chelovekov and S. A. Grebenev, Astron. Lett. 36, 895 (2010).

    Article  ADS  Google Scholar 

  9. I. V. Chelovekov and S. A. Grebenev, Astron. Lett. 37, 597 (2011).

    Article  ADS  Google Scholar 

  10. I. V. Chelovekov and S. A. Grebenev, Astron. Lett. 43 (2017, in press).

    Google Scholar 

  11. I. V. Chelovekov, S. A. Grebenev, and R. A. Sunyaev, Astron. Lett. 32, 456 (2006).

    Article  ADS  Google Scholar 

  12. T. Ebisuzaki, Publ. Astron. Soc. Jpn. 39, 539 (1987).

    ADS  Google Scholar 

  13. T. Ebisuzaki, D. Sugimoto, and T. Hanawa, Publ. Astron. Soc. Jpn. 36, 551 (1984).

    ADS  Google Scholar 

  14. B. A. Fryxell and S. E. Woosley, Astrophys. J. 258, 733 (1982a).

    Article  ADS  Google Scholar 

  15. B. A. Fryxell and S. E. Woosley, Astrophys. J. 261, 332 (1982b).

    Article  ADS  Google Scholar 

  16. M. Y. Fujimoto, T. Hanawa, and S. Miyaji, Astrophys. J. 247, 267 (1981).

    Article  ADS  Google Scholar 

  17. D. K. Galloway, M. P. Muno, J. M. Hartman, D. Psaltis, and D. Chakrabarty, Astrophys. J. Suppl. Ser. 179, 360 (2008).

    Article  ADS  Google Scholar 

  18. S. A. Grebenev, Astron. Lett. (2017, in preparation).

    Google Scholar 

  19. J. Grindlay, H. Gursky, H. Schnopper, D. R. Parsignault, J. Heise, A. C. Brinkman, and J. Schrijver, Astrophys. J. 205, L127 (1976).

    Article  ADS  Google Scholar 

  20. D. A. Gryaznykh, Astron. Lett. 39, 586 (2013a).

    Article  ADS  Google Scholar 

  21. D. A. Gryaznykh, Astron. Lett. 39, 602 (2013b).

    Article  ADS  Google Scholar 

  22. C. J. Hansen and H.M. van Horn, Astrophys. J. 195, 735 (1975).

    Article  ADS  Google Scholar 

  23. J. Heise, J. Grindlay, and W. Liller, IAU Circ., №2929 (1976).

    Google Scholar 

  24. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999).

    ADS  Google Scholar 

  25. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36, 848 (2010).

    Article  ADS  Google Scholar 

  26. P. C. Joss, Astrophys. J. 225, L123 (1978).

    Article  ADS  Google Scholar 

  27. L. Keek, D. K. Galloway, J. J. M. in’t Zand, and A. Heger, Astrophys. J. 718, 292 (2010).

    Article  ADS  Google Scholar 

  28. W. Kluzhniak, PhD Thesis (Stanford Univ., Stanford, CA, 1988).

    Google Scholar 

  29. W. H. G. Lewin, J. van Paradijs, and R. E. Taam, Space Sci. Rev. 62, 223 (1993).

    Article  ADS  Google Scholar 

  30. R.A. London, R.E. Taam, and W.M. Howard, Astrophys. J. 306, 170 (1986).

    Article  ADS  Google Scholar 

  31. N. Lund, C. Budtz-Jorgensen, N. J. Westergaard, S. Brandt, I. L. Rasmussen, A. Hornstrup, C. A. Oxborrow, J. Chenevez, et al., Astron. Astrophys. 411, L231 (2003).

    Article  ADS  Google Scholar 

  32. L. Maraschi and A. Cavaliere, in Highlights of Astronomy, Proceedings of the 16th IAU General Assembly on X-ray Binaries and Compact Objects, Grenoble, France, Aug. 24–Sept. 2, 1976, Ed. by E. A. Müller (IAU, 1977), Vol. 4, p. 127.

  33. T. Murakami, H. Inoue, K. Koyama, K. Makishima, M. Matsuoka, M. Oda, Y. Ogawara, T. Ohashi, et al., Publ. Astron. Soc. Jpn. 32, 543 (1980).

    ADS  Google Scholar 

  34. T. Nozakura, S. Ikeuchi, and M. Y. Fujimoto, Astrophys. J. 286, 221 (1984).

    Article  ADS  Google Scholar 

  35. T. Ohashi, H. Inoue, K. Koyama, K. Makishima, M. Matsuoka, T. Murakami, M. Oda, Y. Ogawara, et al., Astrophys. J. 258, 254 (1982).

    Article  ADS  Google Scholar 

  36. B. Paczynski, Astrophys. J. 264, 282 (1983a).

    Article  ADS  Google Scholar 

  37. B. Paczynski, Astrophys. J. 267, 315 (1983b).

    Article  ADS  Google Scholar 

  38. F. Peng, E. F. Brown, and J.W. Truran, Astrophys. J. 654, 1022 (2007).

    Article  ADS  Google Scholar 

  39. C. Sanchez-Fernandez, E. Kuulkers, and E. Aranzana, in Proceedings of the Conference on Fast X-ray Timing and Spectroscopy at Extreme Count Rates HTRS 2011, Champéry, Switzerland, Feb. 7–11, 2011, PoS 122, id. 69 (2011).

    Google Scholar 

  40. N. I. Shakura and R. A. Sunyaev, Adv. Space Res. 8 (2), 135 (1988).

    Article  ADS  Google Scholar 

  41. N. I. Shakura and R. A. Sunyaev, Astrophys. Lett. Commun. 38, 197 (1999).

    ADS  Google Scholar 

  42. V. A. Simonenko, D. A. Gryaznykh, I. A. Litvinenko, V. A. Lykov, and A. N. Shushlebin, Astron. Lett. 38, 231 (2012).

    Article  ADS  Google Scholar 

  43. D. A. Smith, E. H. Morgan, and H. Bradt, Astrophys. J. 479, L137 (1997).

    Article  ADS  Google Scholar 

  44. T. Strohmayer and L. Bildsten, in Compact Stellar X-ray Sources, Vol. 39 of Cambridge Astrophysics, Ed. by W. Lewin and M. van der Klis (Cambridge Univ. Press, Cambridge, 2006), p. 113; astroph/0301544.

  45. T. E. Strohmayer, W. Zhang, J. H. Swank, A. Smale, L. Titarchuk, C. Day, and U. Lee, Astrophys. J. 469, L9 (1996).

    Article  ADS  Google Scholar 

  46. T. E. Strohmayer, W. Zhang, and J. H. Swank, Astrophys. J. 487, L77 (1997).

    Article  ADS  Google Scholar 

  47. R. A. Sunyaev and L. G. Titarchuk, Astron. Lett. 12, 359 (1986).

    Google Scholar 

  48. F. X. Timmes and J. C. Niemeyer, Astrophys. J. 537, 993 (2000).

    Article  ADS  Google Scholar 

  49. C. Winkler, T. J.-L. Courvoisier, G. Di Cocco, N. Gehrels, A. Gimenez, S. Grebenev, W. Hermsen, J. M. Mas-Hesse, et al., Astron. Astrophys. 411, L1 (2003).

    Article  ADS  Google Scholar 

  50. S. E. Woosley and R. E. Taam, Nature 263, 101 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grebenev.

Additional information

Original Russian Text © S.A. Grebenev, I.V. Chelovekov, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 9, pp. 643–654.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, S.A., Chelovekov, I.V. Multiple X-ray bursts and the model of a spreading layer of accreting matter over the neutron star surface. Astron. Lett. 43, 583–594 (2017). https://doi.org/10.1134/S106377371709002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371709002X

Keywords

Navigation