Skip to main content
Log in

Diffusion of elements in the interstellar medium in early-type galaxies

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The role of diffusion in the redistribution of elements in the hot interstellar medium of earlytype galaxies is considered. It is well known that gravitational sedimentation can affect significantly the abundances of helium and heavy elements in the hot intergalactic gas of massive galaxy clusters. The universal temperature profile in cool-core clusters and the theoretical mass–temperature relation suggest that the maximum effect of sedimentation must take place in the most massive virialized objects in the Universe. However, observational data from the Chandra and XMM-Newton observatories demonstrate more complex scaling relations between the masses of early-type galaxies and other parameters, such as the mass fraction and temperature of the interstellar gas. An important fact is that the radial temperature profile can have both falling and rising patterns. We have calculated the diffusion based on the observed gas density and temperature distributions for 13 early-type galaxies that have different envelope types and cover a wide range of X-ray luminosities. To estimate the maximum effect of sedimentation and thermal diffusion, we have solved the full set of Burgers equations for a non-magnetized interstellar plasma. The results obtained demonstrate a considerable increase of the He/H ratio within one effective radius for all galaxies of our sample. For galaxies with a falling or constant temperature profile the average increase of the helium abundance is 60% in one billion years of diffusion. The revealed effect can introduce a significant bias into the metal abundance estimate based on X-ray spectroscopy and can affect the evolution of stars that could be formed from a gas with a high helium abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  2. K. Arnaud, ASP Conf. 101, 17 (1996).

    ADS  Google Scholar 

  3. B. Boroson, D.-W. Kim, and G. Fabbiano, Astrophys. J. 729, 12 (2011).

    Article  ADS  Google Scholar 

  4. D. Buote, Astrophys. J. Suppl. Ser. 539, 172 (2000).

    Article  ADS  Google Scholar 

  5. J. Burgers, Flow Equation for Composite Gases (Academic, New York, 1969).

    MATH  Google Scholar 

  6. B. D. G. Chandran and S. C. Cowley, Phys. Rev. Lett. 80, 3077 (1998).

    Article  ADS  Google Scholar 

  7. B. D. G. Chandran and J. L. Maron, Phys. Rev. Lett. 602, 170 (2004).

    Google Scholar 

  8. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge Univ. Press, Cambridge, UK, 1952).

    MATH  Google Scholar 

  9. L. Chuzhoy and A. Loeb, Mon. Not. R. Astron. Soc. 349, L13 (2004).

    Article  ADS  Google Scholar 

  10. L. Ciottii, A. DÉrcole, S. Pellegrini, and A. Renzini, Astrophys. J. 376, 380 (1991).

    Article  ADS  Google Scholar 

  11. C. P. O’Dea, S. A. Baum, G. Privon, J. Noel-Storr, A. C. Quillen, N. Zufelt, J. Park, A. Edge, et al., Astrophys. J. 681, 1035 (2008).

    Article  ADS  Google Scholar 

  12. B. Dorman, R. W. O’Connell, and R. T. Rood, Astrophys. J. 442, 105 (1995).

    Article  ADS  Google Scholar 

  13. J. J. Drake, Astrophys. J. 496, L33 (1998).

    Article  ADS  Google Scholar 

  14. S. Ettori and A. C. Fabian, Mon. Not. R. Astron. Soc. 369, L42 (2006).

    Article  ADS  Google Scholar 

  15. S. Faber, G. Wegner, D. Burstein, R. L. Davies, A. Dressler, D. Lynden-Bell, and R. J. Terlevich, Astrophys. J. Suppl. Ser. 71, 173 (1989).

    Article  ADS  Google Scholar 

  16. A. C. Fabian and A. C. Pringle, Mon. Not. R. Astron. Soc. 181, 5P (1977).

    Article  ADS  Google Scholar 

  17. A. Foster, R. Smith, and N. Brickhouse, Astrophys. J. 756, 128 (2012).

    Article  ADS  Google Scholar 

  18. Y. Fukazawa, J. Botoya-Nonesa, J. Pu, A. Ohto, and N. Kawano, Astrophys. J. 636, 698 (2006).

    Article  ADS  Google Scholar 

  19. M. Gilfanov and R. Syunyaev, Sov. Astron. Lett. 10, 137 (1984).

    ADS  Google Scholar 

  20. M. Gilfanov, R. Syunyaev, and E. Churazov, Sov. Astron. Lett. 13, 3 (1987).

    ADS  Google Scholar 

  21. J. D. Hubai, NRL Plasma Formulary (2013).

    Google Scholar 

  22. P. Humphrey, D. Buote, and C. Canizares, Astrophys. J. 617, 1047 (2004).

    Article  ADS  Google Scholar 

  23. P. Humphrey, D. Buote, F. Gastaldello, L. Zappacosta, J. Bullock, F. Brighenti, and W. Mathews, Astrophys. J. 646, 899 (2006).

    Article  ADS  Google Scholar 

  24. P. Humphrey, D. Buote, C. Canizares, A. Fabian, and J. Miller, Astrophys. J. 729, 53 (2011).

    Article  ADS  Google Scholar 

  25. C. Jones, W. Forman, A. Vikhlinin, M. Markevitch, L. David, A. Warmflash, S. Murray, and P. Nulsen, Astrophys. J. 567, L115 (2002).

    Article  ADS  Google Scholar 

  26. J. S. Kaastra, An X-ray Spectral Code for Optically Thin Plasmas (1992).

    Google Scholar 

  27. D.-W. Kim and G. Fabbiano, Astrophys. J. 586, 826 (2003).

    Article  ADS  Google Scholar 

  28. S. Komarov, E. Churazov, M. Kunz, and A. Schekochihin, Mon. Not. R. Astron. Soc. 460, 467 (2016).

    Article  ADS  Google Scholar 

  29. K. Lodders, Astrophys. J. 591, 1220 (2003).

    Article  ADS  Google Scholar 

  30. N. Makino, S. Sasaki, and Y. Suto, Astrophys. J. 497, 555 (1998).

    Article  ADS  Google Scholar 

  31. M. Markevitch, arXiv:0705.3289 (2007).

  32. B. F. Mathiesen and A. E. Evrard, Astrophys. J. 546, 100 (2001).

    Article  ADS  Google Scholar 

  33. P. Medvedev, M. Gilfanov, S. Sazonov, and P. Shtykovskiy, Mon. Not. R. Astron. Soc. 440, 2464 (2014).

    Article  ADS  Google Scholar 

  34. P. Medvedev, M. Gilfanov, and S. Sazonov, Mon. Not. R. Astron. Soc. 459, 431 (2016).

    Article  ADS  Google Scholar 

  35. L. Monchick and E. Mason, Phys. Fluids 10, 1337 (1967).

    Article  ADS  Google Scholar 

  36. R. Nagino and K. Matsushita, Astron. Astrophys. 501, 157 (2009).

    Article  ADS  Google Scholar 

  37. R. Narrayan and M. Medvedev, Phys. Rev. Lett. 562, L129 (2001).

    Google Scholar 

  38. J. Navarro, C. Frenk, and S. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  39. S. Pellegrini, Astrophys. J. 738, 57 (2011).

    Article  ADS  Google Scholar 

  40. F. Peng and D. Nagai, Astrophys. J. 669, 839 (2009a).

    Article  ADS  Google Scholar 

  41. F. Peng and D. Nagai, Astrophys. J. 705, 58 (2009b).

    Article  ADS  Google Scholar 

  42. C. Ree, Y. Lee, S. Yi, S. Yoon, R. Rich, J. Deharveng, Y. Sohn, S. Kaviraj, et al., Astrophys. J. Suppl. Ser. 173, 607 (2007).

    Article  ADS  Google Scholar 

  43. M. Riquelme, E. Quataert, and D. Verscharen, Astrophys. J. 824, 123 (2016).

    Article  ADS  Google Scholar 

  44. G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (Wiley-Interscience, New York, 1979).

    Google Scholar 

  45. P. Shtykovskiy and M. Gilfanov, Mon. Not. R. Astron. Soc. 401, 1360 (2010).

    Article  ADS  Google Scholar 

  46. R. Smith, N. Brickhouse, D. Liedahl, and J. Raymond, Astrophys. J. 556, L91 (2001).

    Article  ADS  Google Scholar 

  47. L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. (Wiley-Interscience, New York, 1962).

    MATH  Google Scholar 

  48. Y. Su and J. Irwin, Astrophys. J. 766, 61 (2013).

    Article  ADS  Google Scholar 

  49. E. O’Sullivan, T. J. Ponman, and R. S. Collins, Mon. Not. R. Astron. Soc. 340, 1375 (2003).

    Article  ADS  Google Scholar 

  50. A. Thoul, J. Bahcall, and A. Loeb, Astrophys. J. 421, 828 (1994).

    Article  ADS  Google Scholar 

  51. J. Tonry, A. Dressler, J. Blakeslee, E. Ajhar, A. Fletcher, G. Luppino, and M. Metzger, Astrophys. J. 546, 681 (2001).

    Article  ADS  Google Scholar 

  52. G. de Vaucouleurs, A. de Vaucouleurs, H. Corwin, et al., Third Reference Catalogue of Bright Galaxies, RC3 Catalog (Springer, New York, 1991).

    Book  Google Scholar 

  53. A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S. Murray, and L. Speybroeck, Astrophys. J. 640, 691 (2006).

    Article  ADS  Google Scholar 

  54. S. D. M. White, J. F. Navarro, A. E. Evrard, and C. S. Frenk, Nature 336, 429 (1993).

    Article  ADS  Google Scholar 

  55. I. V. Zhuravleva, E. M. Churazov, S. Yu. Sazonov, R. A. Sunyaev, R. A. Forman, and K. Dolag, Mon. Not. R. Astron. Soc. 403, 129 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Medvedev.

Additional information

Original Russian Text © P.S. Medvedev, S.Yu. Sazonov, M.R. Gilfanov, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 5, pp. 321–340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, P.S., Sazonov, S.Y. & Gilfanov, M.R. Diffusion of elements in the interstellar medium in early-type galaxies. Astron. Lett. 43, 285–303 (2017). https://doi.org/10.1134/S1063773717050024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717050024

Keywords

Navigation