Skip to main content
Log in

Separation of chemical elements in the atmospheres of CP stars under the action of light induced drift

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A mechanism for the separation of chemical elements and isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of ions is discussed. The efficiency of separation due to LID is proportional to the relative difference of the transport frequencies for collisions of ions of heavy elements located in the excited state (collision frequency ν e ) and ground state (collision frequency ν g ) with neutral buffer particles (hydrogen and helium), (ν e ν g )/ν g . The known interaction potentials are used to numerically compute the relative difference (ν e Hν g H )/νg H for collisions between the ions Be+, Mg+, Ca+, Sr+, Cd+, Ba+, Al+, and C+ and hydrogen atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 7000−20 000 K, values of |ν e H −ν g H |/ν g H ≈ 0.1−0.4 are obtained. With such relative differences in the transport collision frequencies, the LID rate of ions in the atmospheres of coolCP stars (T < 10000 K) can reach ~0.1 cm/s,which exceeds the drift rate due to light pressure by an order of magnitude. This means that, under these conditions, the separation of chemical elements under the action of LID of ions could be an order of magnitude more efficient than separation due to light pressure. Roughly the same manifestations of LID and light pressure are also expected in the atmospheres of hotter stars (20 000 > T > 10 000 K). LID of heavy ions is manifest only weakly in very hot stars (T > 20 000 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Preston, Ann. Rev. Astron. Astrophys. 12, 257 (1974).

    Article  ADS  Google Scholar 

  2. E. F. Borra, J. D. Landstreet, and L. Mestel, Ann. Rev. Astron. Astrophys. 20, 191 (1982).

    Article  ADS  Google Scholar 

  3. V. L. Khokhlova, Itogi Nauki Tekh., Ser. Astron. 24, 233 (1983).

    Google Scholar 

  4. G. Michaud, Astrophys. J. 160, 641 (1970).

    Article  ADS  Google Scholar 

  5. G. Michaud, Y. Charland, S. Vauclair, and G. Vauclair, Astrophys. J. 120, 447 (1976).

    Article  ADS  Google Scholar 

  6. G. Michaud, Astron. J. 85, 589 (1980).

    Article  ADS  Google Scholar 

  7. G. Michaud, in The A-Star Puzzle, Ed. by J. Zverko, J. Ziznovsky, S. J. Adelman, and W. W. Weiss, IAU Symp. 224, 173 (2004).

    Article  ADS  Google Scholar 

  8. G. Michaud, G. Alecian, and J. Richer, Atomic Diffusion in Stars (Springer, New York, London, 2015).

    Book  Google Scholar 

  9. S. N. Atutov and A. M. Shalagin, Sov. Astron. Lett. 14, 284 (1988).

    ADS  Google Scholar 

  10. F. Kh. Gel’mukhanov and A. M. Shalagin, JETP Lett. 29, 711 (1979).

    ADS  Google Scholar 

  11. V. D. Antsygin, S. N. Atutov, F. Kh. Gel’mukhanov, G. G. Telegin, and A. M. Shalagin, JETP Lett. 30, 243 (1979).

    ADS  Google Scholar 

  12. S. G. Rautian and A. M. Shalagin, Kinetic Problems of Nonlinear Spectroscopy (Elsevier, Amsterdam, New York, 1991).

    Google Scholar 

  13. K. A. Nasyrov and A. M. Shalagin, Astron. Astrophys. 268, 201 (1993).

    ADS  Google Scholar 

  14. F. LeBlanc and G. Michaud, Astrophys. J. 408, 251 (1993).

    Article  ADS  Google Scholar 

  15. A. Sapar and A. Aret, Astron. Astrophys. Trans. 7, 1 (1995).

    Article  ADS  Google Scholar 

  16. A. Aret and A. Sapar, Astron. Nachricht. 323, 21 (2002).

    Article  ADS  Google Scholar 

  17. A. Sapar, A. Aret, and R. Poolamae, EAS Publ. Ser. 17, 341 (2005).

    Article  Google Scholar 

  18. A. Sapar, A. Aret, L. Sapar, and R. Poolamae, New Astron. Rev. 53, 240 (2009).

    Article  ADS  Google Scholar 

  19. L. Sapar, A. Sapar, R. Poolamae, and A. Aret, Baltic Astron. 23, 171 (2014).

    ADS  Google Scholar 

  20. T. Ryabchikova, O. Kochukhov, and S. Bagnulo, Astron. Astrophys. 408, 811 (2008).

    Article  ADS  Google Scholar 

  21. T. P. Red’ko, Opt. Spectrosc. 71, 517 (1991).

    ADS  Google Scholar 

  22. A. I. Parkhomenko and A. M. Shalagin, Astron. Rep. 57, 110 (2013).

    Article  ADS  Google Scholar 

  23. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978).

    Google Scholar 

  24. F. K. Gel’mukhanov, L. V. Il’ichov, and A. M. Shalagin, Physica A 137, 502 (1986).

    Article  ADS  Google Scholar 

  25. J. O. Hirschfelder, Ch. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids (Chapman and Hall, New York, 1954; Inostr. Liter., Moscow, 1961).

    MATH  Google Scholar 

  26. J. H. Ferziger and H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972;Mir,Moscow, 1976).

    Google Scholar 

  27. W. A. Hamel, J. E. M. Haverkort, H. G. C. Werij, and J. P. Woerdman, J. Phys. B 19, 4127 (1986).

    Article  ADS  Google Scholar 

  28. V. Aquilanti and F. Vecchiocattivi, Chem. Phys. Lett. 156, 109 (1989).

    Article  ADS  Google Scholar 

  29. C. H. Liu, J. G. Wang, and R. K. Janev, J. Phys. B 43, 144006 (2010).

    Article  ADS  Google Scholar 

  30. M. Wan, F. Wang, and Q. Cao, Mol. Phys. 112, 2184 (2014).

    Article  ADS  Google Scholar 

  31. M. Farjallah, C. Ghanmi, and H. Berriche, Eur. Phys. J. D 67, 245 (2013).

    Article  ADS  Google Scholar 

  32. M. Aymar, R. Guerout, M. Sahlaoui, and O. Dulieu, J. Phys. B 42, 154025 (2009).

    Article  ADS  Google Scholar 

  33. N. Khemiri, R. Dardouri, B. Oujia, and F. X. Gadea, J. Phys. Chem. A 117, 8915 (2013).

    Article  Google Scholar 

  34. J. C. Garcia-Madronal, O. Mo, I. L. Cooper, and A. S. Dickinson, J. Mol. Struct.: THEOCHEM 260, 63 (1992).

    Article  Google Scholar 

  35. M. Abe, Y. Moriwaki, M. Hada, and M. Kajita, Chem. Phys. Lett. 521, 31 (2012).

    Article  ADS  Google Scholar 

  36. H. Habli, H. Ghalla, B. Oujia, and F. X. Gadea, Eur. Phys. J. D 64, 5 (2011).

    Article  ADS  Google Scholar 

  37. M. Aymar and O. Dulieu, J. Phys. B 45, 215103 (2012).

    Article  ADS  Google Scholar 

  38. X. Zhang, G. Liang, R. Li, D. Shi, Y. Liu, X. Liu, H. Xu, and B. Yan, Chem. Phys. 443, 142 (2014).

    Article  ADS  Google Scholar 

  39. A. R. Allouche, F. Spiegelmann, and M. Aubert-Frecon, Chem. Phys. Lett. 204, 343 (1993).

    Article  ADS  Google Scholar 

  40. C. M. Seck, E. G. Hohenstein, C.-Y. Lien, P. R. Stollenwerk, and B. C. Odom, J. Mol. Spectrosc. 300, 108 (2014).

    Article  ADS  Google Scholar 

  41. S. N. Atutov, I. M. Ermolaev, and A. M. Shalagin, Sov. Phys. JETP 65, 679 (1987).

    Google Scholar 

  42. S. N. Atutov, B. V. Bondarev, S. M. Kobtzev, P. V. Kolinko, S. P. Pod’yachev, and A. M. Shalagin, Opt. Commun. 115, 276 (1995).

    Article  ADS  Google Scholar 

  43. F. Wittgrefe, J. L. C. van Saarloos, S. N. Atutov, and E. R. Eliel, J. Phys. B 24, 145 (1991).

    Article  ADS  Google Scholar 

  44. V. M. Zhdanov, Transport Phenomena in Multicomponent Plasma (Energoizdat,Moscow, 1982) [in Russian].

    Google Scholar 

  45. C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1973; Mir,Moscow, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Parkhomenko.

Additional information

Original Russian Text © A.I. Parkhomenko, A.M. Shalagin, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 11, pp. 971–980.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomenko, A.I., Shalagin, A.M. Separation of chemical elements in the atmospheres of CP stars under the action of light induced drift. Astron. Rep. 61, 974–982 (2017). https://doi.org/10.1134/S1063772917110038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917110038

Navigation