Skip to main content
Log in

Features of the accretion in the EX Hydrae system: Results of numerical simulation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Beuermann, T. E. Harrison, B. E. MacArthur, G. F. Benedict, and B. T. Gansicke, Astron. Astrophys. 412, 821 (2003).

    Article  ADS  Google Scholar 

  2. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 1995, 2003).

    Google Scholar 

  3. P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 59, 843 (2015).

    Article  ADS  Google Scholar 

  4. A. N. Semena and M. G. Revnivtsev, Astron. Lett. 40, 475 (2014).

    Article  ADS  Google Scholar 

  5. K. Beuermann and K. Reinsch, Astron. Astrophys. 480, 199 (2008).

    Article  ADS  Google Scholar 

  6. N. Siegel, K. Reinsch, K. Beuermann, E. Wolff, and H. van der Woerd, Astron. Astrophys. 225, 97 (1989).

    ADS  Google Scholar 

  7. M. G. Revnivtsev, R. A. Burenin, A. Yu. Tkachenko, I. M. Khamitov, T. Ak, A. Merloni, M. N. Pavlinsky, and R. A. Syunyaev, Astron. Lett. 38, 238 (2012).

    Article  ADS  Google Scholar 

  8. F. Haberl and C. Motch, Astron. Astrophys. 297, L37 (1995).

    ADS  Google Scholar 

  9. P. A. Evans and C. Hellier, Astrophys. J. 663, 1277 (2007).

    Article  ADS  Google Scholar 

  10. D. Q. Lamb and A. R. Masters, Astrophys. J. 234, L117 (1979).

    Article  ADS  Google Scholar 

  11. S. H. Langer, G. Chanmugam, and G. Shaviv, Astrophys. J. 245, L23 (1981).

    Article  ADS  Google Scholar 

  12. K. Aizu, Prog. Theor. Phys. 49, 1184 (1973).

    Article  ADS  Google Scholar 

  13. J. B. G. Canalle, C. J. Saxton, K. Wu, M. Cropper, and G. Ramsay, Astron. Astrophys. 440, 185 (2005).

    Article  ADS  Google Scholar 

  14. T. Hayashi and M. Ishida, Mon. Not. R. Astron. Soc. 438, 2267 (2014).

    Article  ADS  Google Scholar 

  15. T. Hayashi and M. Ishida, Mon. Not. R. Astron. Soc. 441, 3718 (2014).

    Article  ADS  Google Scholar 

  16. G. R. Blumenthal, G. W. F. Drake, and W. H. Tucker, Astrophys. J. 172, 205 (1972).

    Article  ADS  Google Scholar 

  17. C. W. Mauche, D. A. Liedahl, and K. B. Fournier, Astrophys. J. 560, 992 (2001).

    Article  ADS  Google Scholar 

  18. G. J. M. Luna, J. C. Raymond, N. S. Brickhouse, C. W. Mauche, and V. Suleimanov, Astron. Astrophys. 578, A15 (2015).

    Article  ADS  Google Scholar 

  19. C. Hellier, K. O. Mason, S. R. Rosen, and F. A. Cordova, Mon. Not. R. Astron. Soc. 228, 463 (1987).

    Article  ADS  Google Scholar 

  20. K. Mukai, M. Ishida, J. Osborne, S. Rosen, and D. Stavroyiannopoulos, in Wild Stars in the Old West, Ed. by S. Howell, E. Kuulkers, and C. Woodward, ASP Conf. Ser. 137, 554 (1998).

    ADS  Google Scholar 

  21. A. N. Semena and M. G. Revnivtsev, Astron. Lett. 38, 321 (2012).

    Article  ADS  Google Scholar 

  22. Y. E. Lyubarskii, Mon. Not. R. Astron. Soc. 292, 679 (1997).

    Article  ADS  Google Scholar 

  23. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  24. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  25. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  26. P. B. Isakova, N. R. Ikhsanov, A. G. Zhilkin, D. V. Bisikalo, and N. G. Beskrovnaya, Astron. Rep. 60, 498 (2016).

    Article  ADS  Google Scholar 

  27. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  28. A. G. Zhilkin, D. V. Bisikalo, and V. A. Ustyugov, AIP Conf. Proc. 1551, 22 (2013).

    Article  ADS  Google Scholar 

  29. A. G. Zhilkin, Mat. Model. 22 (1), 110 (2010).

    MathSciNet  Google Scholar 

  30. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Astrophys. J. 578, 420 (2002).

    Article  ADS  Google Scholar 

  31. J. J. Aly, Astron. Astrophys. 86, 192 (1980).

    ADS  Google Scholar 

  32. W. Kundt and M. Robnik, Astron. Astrophys. 91, 305 (1980).

    ADS  Google Scholar 

  33. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1: Plasma Physics (Springer, Berlin, 1984).

    Book  Google Scholar 

  34. S. I. Braginskii, Sov. Phys. JETP 10, 1005 (1959).

    MathSciNet  Google Scholar 

  35. L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Pergamon, New York, 1984).

    Google Scholar 

  36. A. G. Zhilkin, D. V. Bisikalo, and P. A. Mason, Astron. Rep. 56, 257 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Isakova.

Additional information

Deceased.

Original Russian Text © P.B. Isakova, A.G. Zhilkin, D.V. Bisikalo, A.N. Semena, M.G. Revnivtsev, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 7, pp. 566–579.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, P.B., Zhilkin, A.G., Bisikalo, D.V. et al. Features of the accretion in the EX Hydrae system: Results of numerical simulation. Astron. Rep. 61, 560–572 (2017). https://doi.org/10.1134/S1063772917070022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917070022

Navigation