Skip to main content
Log in

Convexity and Concavity Control of Laser Beam Using a Frequency Modulated Acoustic Wave

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The transformation of Gaussian beam into a flat top one is realized by interaction of laser beam with two perpendicular sinusoidal ultrasonic waves operating in Raman–Nath regime. In this paper we propose, theoretically demonstrate and numerically illustrate a convex-concave beam, having the same principle of flat top one, using a frequency-modulated ultrasonic wave. The novelty of this beam is that its intensity varies periodically and regularly as function of time. Furthermore, the amplitude and the frequency of this variation can be controlled, easily by acting on the frequency excursion and modulating signal frequency respectively. Finally, the change in intensity between the centre and the edges of beam will enable to find promising results in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. W.B. Veldkamp and C.J. Kastner, Appl. Opt. 21, 345 (1982). https://doi.org/10.1364/AO.21.000345

    Article  ADS  Google Scholar 

  2. A. Ashkin, J.M. Dziedzic, and T. Yamane, Nature 330, 769 (1987). https://doi.org/10.1038/330769a0

    Article  ADS  Google Scholar 

  3. A. Ashkin, Biophys. J. 61, 569 (1992). https://doi.org/10.1016/S0006-3495(92)81860-X

    Article  ADS  Google Scholar 

  4. M. Gu, J.B. Haumonte, Y. Micheau, and J.W.M. Chon, Appl. Phys. Lett. 84, 4236 (2004). https://doi.org/10.1063/1.1756200

    Article  ADS  Google Scholar 

  5. M. Gu, D. Morrish, and P.C. Ke, Appl. Phys. Lett. 77, 34 (2000). https://doi.org/10.1063/1.126868

    Article  ADS  Google Scholar 

  6. W.M. Lee and X.C. Yuan, Appl. Phys. Lett. 83, 5124 (2003). https://doi.org/10.1063/1.1635079

    Article  ADS  Google Scholar 

  7. P.W. Rhodes and D.L. Shealy, Appl. Opt. 19, 3545 (1980). https://doi.org/10.1364/AO.19.003545

    Article  ADS  Google Scholar 

  8. P.W. Scott and W.H. Southwell, Appl. Opt. 20, 1606 (1981). https://doi.org/10.1364/AO.20.001606

    Article  ADS  Google Scholar 

  9. Zhou Guangya, Yuan Xiaocong, Dowd Philip, Lam Yee-Loy, Chan Yuen-Chuen. J. of the Optical Society of America A. 18, 4 (2001). https://doi.org/10.1364/JOSAA.18.000791

    Article  Google Scholar 

  10. Cai Yangjian, Lin Qiang. J. of the Optical Society of America A. 21, (6) (2004). https://doi.org/10.1364/JOSAA.21.001058

  11. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T.Tschudi, Opt. Lett. 27, 1351 (2002). https://doi.org/10.1364/OL.27.001351

    Article  ADS  Google Scholar 

  12. K. Ferria, A. Bencheikh, and A. Merabet, IEEE, 2, 491 (2012). https://doi.org/10.1109/MIKON.2012.6233629

  13. Y. Gu and G. Gbur, Opt. Lett. 35, 3456 (2010). https://doi.org/10.1364/OL.35.003456

    Article  ADS  Google Scholar 

  14. C.-Y. Hwang, D. Choi, K.-Y. Kim, and B. Lee, Opt.Express 18, 23504 (2010). https://doi.org/10.1364/OE.18.023504

    Article  ADS  Google Scholar 

  15. Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F.J. Gunn-Moore, D.E. Ferrier, T. Vettenburg, and K. Dholakia, Biomed. Opt. Express 5, 3434 (2014). https://doi.org/10.1364/BOE.5.003434

    Article  Google Scholar 

  16. P. Vaveliuk, A. Lencina, J.A. Rodrigo, and O.M. Matos, Opt. Lett. 39, 2370 (2014). https://doi.org/10.1364/OL.39.002370

    Article  ADS  Google Scholar 

  17. D. Hu, Y. Liang, Y. Chen, Z.H. Chen, and X.G. Huang, Opt. Commun. 404, 196 (2017). https://doi.org/10.1016/j.optcom.2017.04.036

    Article  ADS  Google Scholar 

  18. G. Zhu, Y. Wen, X. Wu, Y. Chen, J. Liu, and S. Yu, Opt. Lett. 43, 1203 (2018). https://doi.org/10.1364/OL.43.001203

    Article  ADS  Google Scholar 

  19. Y. Ohtsuka, Y. Arima, and Y. Imal, App. Opt. 24, 2813 (1985). https://doi.org/10.1364/AO.24.002813

    Article  ADS  Google Scholar 

  20. Y. Ohtsuka and A. Tanone, Opt. Commun. 39, 70 (1981). https://doi.org/10.1016/0030-4018(81)90457-0

    Article  ADS  Google Scholar 

  21. Shuzhen Nle, Jin YU, Applied Mechanics and Materials, 743, 800 (2015).

    Article  Google Scholar 

  22. K.B. Yushkov, V.Ya. Molchanov, V.I. Balakshy, S.N. Mantsevich, Proc. SPIE, 10744, Lase Beam Shaping XVIII. (2018). https://doi.org/10.1117/12.2315329

  23. A. Guessoum, N. Laouar, and K. Ferria, Opt. Laser Technol. 97, 260 (2017). https://doi.org/10.1016/j.optlastec.2017.07.002

    Article  ADS  Google Scholar 

  24. A. Guessoum, Optics And Spectroscopy, 126 (4), 443 (2019). https://doi.org/10.1134/S0030400X1904009X

    Article  ADS  Google Scholar 

  25. J.W. Goodman, McGRAW-HILL, (1996). https://www.amazon.fr/Introduction-Fourier-Optics-Joseph-Goodman/dp/0974707724

  26. V.V. Proklov, Y.G. Rezvov, V.N. Chesnokov, ans L.N. Chesnokov, Acoust. Phys. 52, 81–86 (2006). https://doi.org/10.1134/S1063771006010118

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guessoum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guessoum, A. Convexity and Concavity Control of Laser Beam Using a Frequency Modulated Acoustic Wave. Acoust. Phys. 68, 542–548 (2022). https://doi.org/10.1134/S1063771022960016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022960016

Keywords:

Navigation