Skip to main content
Log in

Comparison of the Theory with the Results of Measurements of Fluid Filtration Noise in a Porous Medium

  • ACOUSTICS OF STRUCTURALLY INHOMOGENEOUS MEDIA. GEOLOGICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A method for remote studies of structurally inhomogeneous media is considered: study of filtration noise. A brief description of the previously proposed model for the occurrence of filtration noise is given. The results of calculations are presented, and the features of the internal structure of natural porous materials that govern the generation of acoustic emission, are noted. The calculation results are compared with experimental data recently published in the journal “Acoustical Physics”. Satisfactory agreement is demonstrated between prediction with the proposed theoretical model and measurement results. This opens up possibilities for determining the parameters of porous media and fluid velocity by measuring the filtration noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. E. Sheriff and L. P. Geldart, Exploration Seismology, Vol. 1: History, Theory and Data Acquisition, Vol. 2: Data-Processing and Interpretation (Cambridge Univ. Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1982; Mir, Moscow, 1987).

  2. G. Nolet, Seismic Tomography (D. Reidel Publ. Co., Dordrecht, 1987; Mir, Moscow, 1990).

  3. Active Seismology with Powerful Vibrating Sources, Ed. by G. M. Tsibul’chik (GEO, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  4. F. Brenguier, M. Campillo, C. Hadziioannou, N. Shapiro, R. Nadeau, and E. Larose, Science 321 (5895), 1478 (2008).

    Article  ADS  Google Scholar 

  5. T. Yu. Koroleva, T. B. Yanovskaya, and S. S. Patrusheva, Izv., Phys. Solid Earth 45 (5), 396 (2009).

    Google Scholar 

  6. T. B. Yanovskaya, Izv., Phys. Solid Earth 53 (6), 819 (2017).

    Article  Google Scholar 

  7. G. T. Schuster, Seismic Interferometry (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  8. S. A. Tikhotskii, D. A. Presnov, A. L. Sobisevich, and A. S. Shurup, Acoust. Phys. 67 (1), 91 (2021).

    Article  ADS  Google Scholar 

  9. A. L. Sobisevich, D. A. Presnov, and A. S. Shurup, Acoust. Phys. 67 (1), 62 (2021).

    Article  ADS  Google Scholar 

  10. R. M. McKinly, F. M. Bower, and R. C. Rumble, J. Petrol. Tech. 25 (3), 329 (1973).

    Article  Google Scholar 

  11. E. F. Afanas’ev, K. L. Grdzelova, and D. V. Plyushchev, Dokl. Akad. Nauk SSSR 3, 554 (1987).

    Google Scholar 

  12. S. A. Nikolaev and M. N. Ovchinnikov, Akust. Zh. 38, 114 (1992).

    Google Scholar 

  13. A. I. Ipatov and M. I. Kremenetskii, Geophysical and Hydrodynamic Development Control for Carbon Depositions (Regular and Chaotic Dynamics, Moscow-Izhevsk, 2010) [in Russian].

    Google Scholar 

  14. E. A. Marfin, Borehole Noise Logging, Vibrational and Acoustical Impact to Fluid Saturated Layers. Student’s Book (Kazan Federal Univ., Kazan, 2012) [in Russian].

    Google Scholar 

  15. E. A. Marfin, I. S. Metelev, B. A. Garif’yanov, and A. A. Abdrashitov, Uch. Zap. Fiz. Fak. 6, 146316 (2014).

    Google Scholar 

  16. S. A. Metelev, M. N. Ovchinnikov, E. A. Marfin, R. R. Gaifutdinov, and R. N. Sagirov, Acoust. Phys. 65 (2), 200 (2019).

    Article  ADS  Google Scholar 

  17. G. B. Pykhachev and R. G. Isaev, Underground Hydraulics (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitch, Hydrodynamics, Vol. 6: Theoretical Physics (Nauka, Moscow, 1988) [in Russian].

  19. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  20. V. N. Shchelkachev and B. B. Lapuk, Underground Hydraulics (Gos. Nauchno-Tekhn. Izd Neftyanoi i Gorno-Toplivnoi Literatury, Moscow, 1949) [in Russian].

    Google Scholar 

  21. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Liquids and Gases in Natural Deposits (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  22. S. I. Sergeev, N. I. Ryzhikov, and D. N. Mikhailov, J. Petrol. Sci. Eng. 172, 654 (2019).

    Article  Google Scholar 

  23. Yu. M. Zaslavskii, Elektron. Zh. Tekhn. Akust. 5, 11 (2005).

    Google Scholar 

  24. A. Kh. Mirzadzhanzade, M. M. Khasanov, and R. N. Bakhtizin, Simulation of Oil and Gas Extraction Processes. Nonlinearity, Nonequilibrium, Uncertainty (Space Research Inst., Moscow-Izhevsk, 2004) [in Russian].

    Google Scholar 

  25. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  26. D. Mikhailov and S. Sergeev, Water Resour. Res. 55 (5), 4220 (2019).

    Article  ADS  Google Scholar 

  27. A. V. Lebedev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61, 343 (2018).

    Google Scholar 

  28. A. V. Lebedev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 63, 155 (2020).

    Google Scholar 

  29. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillation (Fizmatgiz, Leningrad, 1959) [in Russian].

    MATH  Google Scholar 

  30. M. Sahimi, Applications of Percolation Theory (Taylor and Francis, 1994).

    Book  Google Scholar 

  31. M. Kleman and O. D. Lavrentovich, Physics Foundations for Partially Ordered Mediums (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  32. J. Dvorkin and A. Nur, Geophysics 58 (4), 524 (1993).

    Article  ADS  Google Scholar 

  33. J. Dvorkin, R. Nolen-Hoeksema, and A. Nur, Geophysics 59 (3), 428 (1994).

    Article  ADS  Google Scholar 

  34. G. Mavko, T. Mukeji, and J. Dvorkin, The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media, 2nd ed. (Cambridge Univ. Press, Cambridge, MA, 2009).

    Book  Google Scholar 

  35. A. V. Lebedev and L. A. Ostrovsky, Acoust. Phys. 60 (5), 555 (2014).

    Article  ADS  Google Scholar 

  36. W. F. Brace, E. Silver, K. Hadley, and C. Goetze, Science 178, 162 (1972).

    Article  ADS  Google Scholar 

  37. R. L. Kranz, Tectonophysics 100, 449 (1983).

    Article  ADS  Google Scholar 

  38. R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: the Complex Behaviour of Rocks, Soil, Concrete (Wiley-VC, 2009).

    Book  Google Scholar 

  39. B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  40. N. P. Chrotiros, Acoustics of the Seabed as a Poroelastic Medium (ASA Press, Springer, New York, 2017).

    Book  Google Scholar 

  41. I. K. Kikoin, Physical Quantities. Handbook (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  42. V. S. Averbakh, V. V. Bredikhin, A. V. Lebedev, and S. A. Manakov, Acoust. Phys. 63 (3), 346 (2017).

    Article  ADS  Google Scholar 

  43. V. S. Averbakh, V. V. Bredikhin, A. V. Lebedev, and S. A. Manakov, Acoust. Phys S56, 794 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 22-22-00230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V. Comparison of the Theory with the Results of Measurements of Fluid Filtration Noise in a Porous Medium. Acoust. Phys. 68, 485–495 (2022). https://doi.org/10.1134/S1063771022040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022040054

Keywords:

Navigation