Skip to main content
Log in

Streamline Computation Study on Rotation Aerodynamic Noise Prediction of Cross-flow Fan

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The approach of resolving analysis the cross-flow relative motion streamline on the cross-flow straight blade is presented to predict the rotation aerodynamic noise performance of cross-flow fan by solving the dipole source term of Ffowcs Williams and Hawkings equation, while the cross-flow fan is applied in the indoor unit of split-type air-conditioner and operated in the rated condition. The calculating results of the method are respectively drawn by programming in Matlab computational language, and compared with the results of CAA numerical simulation and noise experiment. There are some differences in the distribution condition of aerodynamic force fluctuation amplitude on the blade surface, and sound pressure in the related frequency on the indoor unit casing, or on the sphere far field, between the streamline computation approach and numerical simulation. The orders of magnitudes of these calculating results solved by the analysing streamline method are similar with that attained by the numerical simulation. The resolving analysis approach has the characteristics of decreasing the computing cost and not constructing the acoustics grid model of fan, compared with the numerical simulation. The error between the result of numerical simulation and noise test is larger than that between the result of theoretical calculation and noise test, so the approach could be used for the rotation aerodynamic noise analysis of the cross-flow fan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. Shigehisa Funabashi, Yasushi Shigenaga, Masatoshi Watanabe, et al., in Proc. Fluids Engineering Summer Conference (Charlotte, NC, 2004), p. 1.

  2. Young J. Moon, Yong Cho, and Hyun-Sik Nam, Comput. Fluids 32, 995 (2003).

    Article  Google Scholar 

  3. Yong Cho and Young J. Moon, J. Fluids Eng. 125, 543 (2003).

    Article  Google Scholar 

  4. Xu Shumin, Xu Ligong, Yang Jiming, et al., HV & AC 32 (3), 47 (2002).

    Google Scholar 

  5. Y. Li, H. Ouyang, J. Tian, et al., Proc. Inst. Mech. Eng., Part A 24, 555 (2010).

    Google Scholar 

  6. Tian Jie, Ouyang Hua, Li You, et al., J. Mech. Eng. 46 (3), 97 (2010).

    Article  Google Scholar 

  7. Go-Long Tsai, Tsung-Hsien Tu, Tung-Chen Li, et al., JSME Int. J. 46 (3), 695 (2006).

    Article  ADS  Google Scholar 

  8. Wang Yin-jiao, Lu Jian-wei, Jiang Bin, et al., J. Hefei Univ. Technol. 35 (7), 882 (2012).

    ADS  Google Scholar 

  9. Gan Jia-ye, Liu Fei, Liu Min, et al., J. Eng. Thermophys. 31 (2), 267 (2010).

    Google Scholar 

  10. Liu Hai-Jian, Ouyang Hua, Tian Jie, et al., J. Eng. Thermophys. 33 (2), 236 (2012).

    Google Scholar 

  11. Huanxin Lai, Meng Wang, ChuyeYun, et al., Int. J. Rotating Mach. 2011, 528 927 (2011).

    Article  Google Scholar 

  12. Zhou Bo, You Bin, and Wu Ke-Qi, J. Eng. Thermophys. 29 (12), 2043 (2008).

    Google Scholar 

  13. Wu Xian-Jun and Li Zhi-Ming, Fan Technol. 3, 11 (2002).

  14. Jin Shuo, J. Nanjing Inst. Ind. Technol. 7 (4), 4 (2007).

    Google Scholar 

  15. Hu Yatao, Liu Ying, Xue Yongfei, et al., J. Huazhong Univ. Sci. Technol., Nat. Sci. 37 (7), 94 (2009).

    Google Scholar 

  16. Liu Fei, Wang Jia-Bing, Hu Ya-Tao, et al., J. Eng. Thermophys. 30 (1), 44 (2009).

    Google Scholar 

  17. Han Wen and Zhao Xiang-yang, Sci. Technol. Eng. 9 (22), 6811 (2009).

    Google Scholar 

  18. Liu Min, Hu Ya-Tao, Liu Fei, et al., J. Eng. Thermophys. 31 (2), 256 (2010).

    Google Scholar 

  19. Chen Anbang, LI Song, and Huang Dongtao, J. Tsinghua Univ. (Sci. Technol.) 47 (2), 236 (2007).

    Google Scholar 

  20. [22] Wang Jian-ming, Ma Shu-yuan, Shen Zhen-hua, et al., Fluid Mach. 44 (6), 34 (2016).

  21. A. A. Aksenov, V. N. Gavrilyuk, and S. F. Timushev, Acoust. Phys. 62 (4), 447 (2016).

    Article  ADS  Google Scholar 

  22. K. R. Pyatunin, N. V. Arkharova, and A. E. Remizov, Acoust. Phys. 62 (4), 495 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Fluid Machinery Laboratory of Huazhong University of Science and Technology for helping the author to take the noise experiment of the cross-flow fan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui Li Streamline Computation Study on Rotation Aerodynamic Noise Prediction of Cross-flow Fan. Acoust. Phys. 65, 418–431 (2019). https://doi.org/10.1134/S1063771019040110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019040110

Keywords:

Navigation