Skip to main content
Log in

A Computational and Experimental Study of the Effect of Vibroacoustic Loads on the Structural Performance of Composite Skin-Stringer Joint

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article investigates the response of composite skin-stringer joint to broadband acoustic loading. To describe the frequency and spatial structure of the acting sound field, the study used a model of a field completely correlated over the surface of a sample with a uniform frequency spectral density. The finite element method (FEM) was used to simulate the response of the joint in the 50–1550 Hz frequency band at different total sound pressure levels. To validate the FEM, a series of experiments on a vibration table were carried out, in which vibration simulated acoustic loading. The data obtained were used as the input data for integrating the equations of motion. The results of calculating of the RMS strains in the zone of maximum stresses showed good convergence with the experimental results. For samples containing simulated defects, the resonance frequencies and dynamic response parameters were calculated. Comparison of these results with experimental data characterizing the change in the resonance frequency as a function of defect size made it possible to specify the applied failure criterion and adapt the FEM for analyzing the durability of the composite joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. L. Clarkson, Review of Sonic Fatigue Technology. NASA Contract Report, NASA–CR–4587 (National Aeronautics and Space Administration Langley Research Center, Hampton, VA, 1994).

    Google Scholar 

  2. A. G. R. Thomson, Acoustic Fatigue Design Data. AGARDograp 162 (1972).

  3. ESDU Engineering Data: Acoustic Fatigue Series, Vol. 1: General, Endurance Under Acoustic Loading, Vol. 2: Loading Actions, Damping, Vol. 3: Stress/Strain Response of Plate Structures, Vol. 4: Natural Frequencies of Plate Structures, Vol. 5: Natural Frequencies of Shell Structures, Vol. 6: Natural Frequencies of Sandwich Panels and Box Structures.

  4. A. Powell, J. Acoust. Soc. Am. 30, 1130 (1958).

    Article  ADS  Google Scholar 

  5. S. V. Dubinskii and A. A. Safonov, J. Mach. Manuf. Reliab. 46 (5), 501 (2017). https://doi.org/10.3103/s1052618817050041

    Article  Google Scholar 

  6. E. J. Barbero, Finite Element Analysis of Composite Materials (CRC Press, 2008).

    Google Scholar 

  7. S. P. Rychkov, Simulation of Structures in Femap with Nastran Environment (DMK Press, Moscow, 2013) [in Russian].

    Google Scholar 

  8. ABAQUS 6.12 User’s Manual (Dassault Systems Simulia Corp., Providence, RI, 2012).

  9. Polymer Matrix Composites: Materials Usage, Design and Analysis, Vol. 3 of The Composite Material Handbook (Society of Automotive Engineers, Warrendale, PA, 2009), Chap. 4.

  10. L. C. Chow and R. J. Cummins, in Proc. ICSV5 (Adelaide, 1997), Vol. 2, p. 599. https://www.acoustics.asn.au/conference_proceedings/ICSVS-1997/pdf/indexprn.pdf.

  11. R. S. Langley, J. Sound Vib. 156, 521 (1992).

  12. R. S. Langley, J. Sound Vib. 178, 411 (1994).

  13. Y. Xiao, R. G. White, and G. S. Aglietti, Compos. Struct. 68, 455 (2005).

    Article  Google Scholar 

  14. Y. Xiao, R. G. White, and G. S. Aglietti, J. Acoust. Soc. Am. 117 (5), 2820 (2005).

    Article  ADS  Google Scholar 

  15. ESDU 84027: Endurance of Fiber-Reinforced Composite, Laminated Structural Elements Subjected to Simulated Random Acoustic Loading (2014).

  16. R. M. Ajaj, G. Allegri, and A. T. Isikveren, Aeronaut. J. 114 (1162), 15 (2011).

    Article  Google Scholar 

  17. G. Di Spirito, PhD Thesis (University of Naples Federico II, Naples, 2015).

  18. C. Uz and T. T. Ata, in Proc. Conference of the Society for Experimental Mechanics Series (Orlando, FL, January 25–28, 2016), p. 219.

  19. A. Ya. Zverev and V. V. Chernykh, Acoust. Phys. 64 (6), 750 (2018).

    Article  ADS  Google Scholar 

  20. V. V. Bolotin, Random Vibrations of Elastic Systems (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  21. Aviation Acoustics, Part 2: Noise in Cabins of Passenger Aircrafts, Ed. by A. G. Munin (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  22. A. C. Eringen, Trans. ASME, Ser. E: Appl. Mech., No. 24, 46 (1957).

  23. H. Wagner and Bhat Rama, Ing.-Arch. 39, 149 (1970).

    Google Scholar 

  24. S. L. Denisov and A. L. Medvedskii, Mekh. Kompoz. Mater. 18 (4), 527 (2012).

    Google Scholar 

  25. M. J. Crocker, J. Sound Vib. 9 (1), 6 (1969).

  26. A. G. Dashevskii, B. M. Efimtsov, and A. Ya. Zverev, Akust. Zh. 34 (1), 68 (1988).

    Google Scholar 

  27. A. Ya. Zverev and B. M. Efimtsov, Acoust. Phys. 58 (4), 420 (2012).

    Article  ADS  Google Scholar 

  28. G. Bayerdorfer, J. Sound Vib. 17 (1), 55 (1971).

  29. N. G. Belyi and V. A. Savkin, Tr. Tsentr. Aerogidrodin. Inst. im. Professora N. E. Zhukovskogo, No. 262, 1 (1964).

    Google Scholar 

  30. K. J. Bathe and E. L. Wilson, J. Eng. Mech. Div., Am. Soc. Civ. Eng. 98, 1471 (1972).

    Google Scholar 

  31. B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    MATH  Google Scholar 

  32. LabWindowsTM/CVITM Programmer Reference Manual. National Instruments, Edition Part Number 323643A-01 (Austin, TX, 2003).

  33. A. I. Pankratov, A. V. Vrachev, A. A. Grigor’ev, V. I. Makarevich, N. A. Mozzherova, and V. S. Nikolaev, Manual for Airplane Designer, Vol. 3: Airplane Strength, Book 4: Fatigue Strength. Lifetime and Reliability of Airplane Frame, Issue 9: Procedure for Testing Aviation Structures under Acoustic Loading (Central Aero-Hydrodynamic Institute Named after Professor N. E. Zhukovsky 1981), No. 1292.

  34. A. S. Boichuk, A. V. Stepanov, E. I. Kosarina, and A. S. Generalov, Aviats. Mater. Tekhnol., No. 2 (27), 41 (2013).

  35. Advisory Circular 20-107B, 2009, Change 1 (Federal Aviation Administration, Washington, DC, 2010).

  36. S. Dubinskii, V. Senik, and Yu. Feygenbaum, J. Aircr. 55 (6), 2307 (2018).

    Article  Google Scholar 

  37. A. J. Fawcett and G. D. Oaks, in Proc. Workshop for Composite Damage Tolerance and Maintenance (Federal Aviation Administration, Chicago, IL, 2006), Session No. 1, Presentation No. 2.

Download references

Funding

This study was supported by the Russian Ministry of Science and Higher Education under agreement no. 075-11-2018-178 (unique identifier RFMEFI62818X0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dubinskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinskii, S.V., Sevastyanov, F.S., Golubev, A.Y. et al. A Computational and Experimental Study of the Effect of Vibroacoustic Loads on the Structural Performance of Composite Skin-Stringer Joint. Acoust. Phys. 65, 359–368 (2019). https://doi.org/10.1134/S1063771019040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019040043

Keywords:

Navigation