Skip to main content
Log in

Detection of cracking and damage mechanisms in brittle granites by moment tensor analysis of acoustic emission signals

  • Acoustics of Structurally Inhomogeneous Solid Media. Geological Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An acoustic emission (AE) testing of rock cracking was performed under uniaxial loading conditions by precut varisized circular holes in selected brittle granites. Based on AE-source location technique and AE-theory for moment tensor analysis, rules of the temporal–spatial evolution of micro-cracks in different failure mechanisms were explored and types of micro-cracks were analyzed as well. The results revealed that the micro-cracks are uniquely easy to generate in the positions where stress are concentrated. Tensile fractures are easy to form on the roof and floor of a circular hole, while shear fractures are easy to be found on both sides. The locations of initial cracks generated around the holes in the loading process are the direction or vertical direction of maximum principle stress. Macroscopic crack orientation agrees with the direction of maximum principle stress approximately. As the size of circular opening increases and the relative size of pillar decreases, shear cracks are dominant with the percentage more than 45%, tension cracks are fewer, accounted for less than 40% of the total events, and mixed-mode cracks represent a minimum proportion, despite the decrease of percentage of shear cracks. The findings of this work can serve for supporting design of tunnel or roadway to avoid collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. B. Martino and N. A. Chandler, Int. J. Rock Mech. Mining Sci., 41 (8), 1413–1426 (2004).

    Article  Google Scholar 

  2. A. Golshani, M. Oda, Y. Okui, T. Takemurab, and E. Munkhtogoo, Int. J. Rock Mech. Mining Sci. 44 (6), 835–845 (2007).

    Article  Google Scholar 

  3. W. C. Zhu and O. T. Bruhns, Int. J. Rock Mech. Mining Sci. 45 (5), 815–830 (2008).

    Article  Google Scholar 

  4. H.Q. Yang, D. Huang, X.M. Yang, and X.P. Zhou, Tunnelling and Underground Space Technol., 35 (1), 78–88 (2013).

    Article  Google Scholar 

  5. B. Shen and N. Barton, Int. J. Rock Mech. Mining Sci. 34 (1), 117–125 (1997).

    Article  Google Scholar 

  6. S. Mitaim and E. Detournay, Int. J. Rock Mech. Mining Sci. 41 (8), 1447–1457 (2004).

    Article  Google Scholar 

  7. S.H. Chang and C.I. Lee, Int. J. Rock Mech. Mining Sci. 41 (7), 1069–1086 (2004).

    Article  Google Scholar 

  8. S. J. Liu, L. X. Wu, and Y. B. Zhang, Dongbei Daxue Xuebao (J. Northeastern University), 30 (7), 1034–1038 (2009) [in Chinese].

    Google Scholar 

  9. S. J. Liu, L. X. Wu, H. P. Wu, Y. H. Wu, T. Cheng, and G. H. Li, Chin. J. Rock Mech. Eng. 21 (11), 1585–1589 (2002) [in Chinese].

    Google Scholar 

  10. A. K. Maji and J. L. Wang, Rock Mech. Eng., 25 (1), 25–47 (1992).

    Article  Google Scholar 

  11. M. Y. Wang, P. X. Fan, Q. H. Qian, and H. J. Deng, J. Central South Univ. Technol., 18 (3), 866–873 (2011).

    Article  Google Scholar 

  12. Z. H. Tan, C. A. Tang, W. C. Zhu, S. Y. Wang, and Z. H. Chen, Yanshilixue Yu Gongcheng Xuebao (Chin. J. Rock Mech. Eng.) 24 (16), 2977–2981 (2005) [in Chinese].

    Google Scholar 

  13. H. Kawakata, A. Cho, T. Yanagidani, and M. Shimada, Int. J. Rock Mech. Mining Sci., 34 (3–4), 151–162 (1997).

    Google Scholar 

  14. H. Kawakata, A. Cho, T. Kiyama, T. Yanagidani, K. Kusunoseb, and M. Shimada, Tectonophysics, 313 (3), 293–305 (1999).

    Article  ADS  Google Scholar 

  15. D. Lockner, Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 30 (7), 883–899 (1993).

    Article  Google Scholar 

  16. X. D. Zhao, Insight–Non–Destructive Testing and Condition Monitoring, 54 (12), 662–666 (2012).

    Article  Google Scholar 

  17. V. Yu. Zaitsev, V. E. Gusev, V. E. Nazarov, and B. Castagnède, Acoust. Phys., 51 (Suppl.), 5–5 (2005).

    Article  Google Scholar 

  18. B. Feignier and R. P. Young, Geophys. Research Lett., 19 (14), 1503–1506 (1992).

    Article  ADS  Google Scholar 

  19. K. Aid and P. G. Richards, Quantitative Seismology: Theory and Methods (San Francisco, 1980).

    Google Scholar 

  20. M. Ohtsu, Research Nondestruct. Eval. 6 (3), 169–184 (1995).

    Article  ADS  Google Scholar 

  21. M. Ohtsu, J. Geophys. Research: Solid Earth 96 (B4), 6211–6221 (1991).

    Article  ADS  Google Scholar 

  22. K. Ohno and M. Ohtsu, Construction and Building Materials 24 (12), 2339–2346 (2010).

    Article  Google Scholar 

  23. J. P. Liu, S. D. Xu, Y. H. Li, L. B. Dong, and J. Wei, Vanshilixue Yu Congcheng Xuebao (Chin. J. Rock Mech. Eng.) 31 (12), 2538–2547 (2012) [in Chinese].

    Google Scholar 

  24. S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw–Hill, New York, 1951).

    MATH  Google Scholar 

  25. B. J. Carter, E. Z. Lajtai, and A. Petukhov, Int. J. Numer. Analyt. Methods Geomech. 15 (1), 21–40 (1991).

    Article  Google Scholar 

  26. T. Yanagidani, S. Ehara, O. Nishizawa, K. Kusunose, and M. Terada, J. Geophys. Research: Solid Earth 90 (B8), 6840–6858 (1985).

    Article  ADS  Google Scholar 

  27. G. Mavko, T. Mukeji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-da Xu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Sd., Li, Yh. & Liu, Jp. Detection of cracking and damage mechanisms in brittle granites by moment tensor analysis of acoustic emission signals. Acoust. Phys. 63, 359–367 (2017). https://doi.org/10.1134/S1063771017030137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017030137

Keywords

Navigation