Skip to main content
Log in

Design of Si–SiO2 phoxonic crystal having defect layer for simultaneous sensing of biodiesel in a binary mixture of diesel through optical and acoustic waves

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The potentiality of a phoxonic crystal for sensing of biodiesel in a binary mixture of diesel and biodiesel is theoretically investigated. Using the transfer matrix method, the transmission of acoustic and optical waves through a periodic one-dimensional crystal of Si–SiO2 layers is studied. A pass band is created in the band gap region by introducing a cavity in the considered one-dimensional crystal structure. This pass band can also be considered as a defect mode, and it is found that its position is highly dependent on mole concentration of binary mixture of biodiesel and diesel present in the cavity. The sensitivity of the sensor for a binary mixture of biodiesel and diesel in the cavity with various mole concentrations is estimated. Simulated results provide a valuable guidance for designing a phoxonic crystal sensor consisting of a defect layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. C. J. Bart, N. Palmeri, and S. Cavallaro, Biodiesel Science and Technology from Soil to Oil (Woodhead, Cambridge, 2010).

    Book  Google Scholar 

  2. E. Campbell, Regional Impacts of Biofuels on Health and Climate Change, (Presentation at the Institute of Medicine Workshop on the Nexus of Biofuels Energy, Climate Change, and Health, Washington, DC, 2013).

    Google Scholar 

  3. S. D. Romano and P. A. Sorichetti, Dielectric Spectroscopy in Biodiesel Production and Characterization, Green Energy and Technology Series (Springer-Verlag, London, 2011).

    Book  Google Scholar 

  4. M. Maldovan and E. L.Thomas, Appl. Phys. B 83 (4), 595–600 (2006).

  5. S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, J. Appl. Phys. 106 (7), 074912-6 (2009).

    Article  ADS  Google Scholar 

  6. Y. T. Fang, J. J. Wang, and Y. X. Jiang, Acoust. Phys. 60 (2), 148–154 (2014).

    Article  ADS  Google Scholar 

  7. N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, J. Appl. Phys. 112 (2), 024910-9 (2012).

    Article  ADS  Google Scholar 

  8. F. dell’Olio and V. M. N. Passaro, Optics Express 15 (8), 4977–4993 (2007).

    Article  ADS  Google Scholar 

  9. A. Oseev, M. Zubtsov, and R. Lucklum, Sensor Actuators B 189, 208–212 (2013).

    Article  Google Scholar 

  10. J. E. Baker, R. Sriram, and B. L. Miller, Lab Chip 15 (4), 971–990 (2015).

    Article  Google Scholar 

  11. R. Lucklum, M. Zubtsov, and A. Oseev, Anal. Bioanal. Chem 405 (20), 6497–6509 (2013).

    Article  Google Scholar 

  12. Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Lévêque, and B. Djafari-Rouhani, Appl. Phys. Lett. 101, 061109 (2012).

  13. J. He, B. D. Djafari-Rouhani, and J. Sapriel, Phys. Rev. B: Condens. Matter 37, 4086–4098 (1988).

    Article  ADS  Google Scholar 

  14. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

    Google Scholar 

  15. V. Velusamy and L. Palaniappan, Asian J. Appl. Sci. 5 (7), 514–521 (2012).

    Article  Google Scholar 

  16. S. Geacai, I. Nita, O. Iulian, and E. Geacai, U. P. B. Sci. Bull. Ser. B 74 (4), 149–160 (2012)

    Google Scholar 

  17. K. M. Mayer and J. H. Hafner, Chem. Rev. 111 (6), 3828–3857 (2011).

    Article  Google Scholar 

  18. R. Soref, Nature Photonics 4 (8), 495–497 (2010).

    Article  ADS  Google Scholar 

  19. I. E. Psarobas and N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 174303-5 (2010).

    Article  ADS  Google Scholar 

  20. B. P. Sorokin, A. V. Telichko, G. M. Kvashnin, V. S. Bormashov, and V. D. Blank, Acoust. Phys. 61 (6), 669–680 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Kumar, S. & Singh, V. Design of Si–SiO2 phoxonic crystal having defect layer for simultaneous sensing of biodiesel in a binary mixture of diesel through optical and acoustic waves. Acoust. Phys. 63, 159–167 (2017). https://doi.org/10.1134/S1063771017020117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017020117

Keywords

Navigation