Skip to main content
Log in

Photolytic and Oxidative Degradation Behavior of Anticancer Drug Venetoclax: Characterization of New Degradation Products Using High Resolution Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Venetoclax (VEN), an anticancer drug, was subjected to photolytic and oxidative degradation studies. The comprehensive degradation profiling of VEN in both conditions was reported. All the degradation products (DPs) were separated on reversed phase HPLC by employing an X-Bridge C18 column with ammonium acetate (pH adjusted to 3.20 with acetic acid) and organic solvent mixture of methanol with acetonitrile in the ratio of 90 : 10 as mobile phase. The overall results showed that it underwent significant degradation upon exposure to light (acidic pH) and oxidative (H2O2 at room temperature and 2,2-azobisisobutyronitrile at 40°C) conditions. A total of fifteen new DPs were identified with high resolution mass spectrometry data generated from liquid chromatography–high resolution mass spectrometry system. This information was used for the establishment of a complete degradation pathway of VEN. Additionally, in silico properties, viz., absorption, distribution, metabolism, excretion and toxicity (ADMET), of VEN and its DPs were predicted with admetSAR software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. ICH, Stability testing of new drug substances and products Q1A(R2), Geneva: Int. Council for Harmonization, 2006.

    Google Scholar 

  2. WHO, Expert committee on specifications for pharmaceutical preparations, Geneva: World Health Organization, 2005.

    Google Scholar 

  3. Singh, S., Junwal, M., Modhe, G., Tiwari, H., Kurmi, M., Parashar, N., and Sidduri, P., TrAC, Trends Anal. Chem., 2013, vol. 49, p. 71.

    Article  CAS  Google Scholar 

  4. ICH, Photostability testing of new drug substances and products Q1B, Geneva: Int. Council for Harmonization, 2005.

    Google Scholar 

  5. Dhiman, V., Patil, K., Velip, L., Talluri, M.V.N.K., and Gananadhamu, S., Rapid Commun. Mass Spectrom., 2022, vol. 36, no. 1, p. e9210.

    Article  CAS  PubMed  Google Scholar 

  6. Rane, V.P., Patil, R.H., Patil, K.R., Pathan, A.R., Naik, S., Ahirrao, V.K., Jadhav, R.A., and Yeole, R.D., Chromatographia, 2022, vol. 85, p. 155.

    Article  CAS  Google Scholar 

  7. Baertschi, S.W., Alsante, K.M., and Reed, R.A., Pharmaceutical Stress Testing: Predicting Drug Degradation, vol. 210, New York: Taylor and Francis, 2005.

    Book  Google Scholar 

  8. Cang, S., Iragavarapu, C., Savooji, J., Song, Y., and Liu, D., J. Hematol. Oncol., 2015, vol. 8, p. 129.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Žigart, N., Črnugelj, M., Ilaš, J., and Časar Z., Pharmaceutics, 2020, vol. 12, no. 7, p. 639.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pokar, D., Sahu, A.K., and Sengupta, P., J. Anal. Sci. Technol., 2020, vol. 11, no. 1, p. 54.

    Article  Google Scholar 

  11. Singh, S. and Bakshi, M., Pharm. Technol., 2000, vol. 4, p. 1.

    Google Scholar 

  12. Ge, L., Chen, J., Wei, X., Zhang, S., Qiao, X., Cai, X., and Xie, Q., Environ. Sci. Technol., 2010, vol. 44, no. 7, p. 2400.

    Article  CAS  PubMed  Google Scholar 

  13. Babic, S., Periša, M., and Škoric, I., Chemosphere, 2013, vol. 91, no. 11, p. 1635.

    Article  CAS  PubMed  Google Scholar 

  14. Narayanam, M., Handa, T., Sharma, P., Jhajra, S., Muthe, P.K., Dappili, P.K., Shah, R.P., and Singh, S., J. Pharm. Biomed. Anal., 2014, vol. 87, p. 191.

    Article  CAS  PubMed  Google Scholar 

  15. Demarque, D.P., Crotti, A.E.M., Vessecchi, R., Lopes, J.L.C., and Lopes, N.P., Nat. Prod. Rep., 2016, vol. 33, no. 3, p. 432.

    Article  CAS  PubMed  Google Scholar 

  16. Samanthula, G., Swain, D., Sahu, G., Bhagat, S., and Bharatam, P.V., J. Anal. Chem., 2018, vol. 73, p. 560.

    Article  CAS  Google Scholar 

  17. Sun, M., Dai, W., and Liu, D.Q., J. Mass Spectrom., 2008, vol. 43, no. 3, p. 383.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J. and Choi, W., Environ. Sci. Technol., 2004, vol. 38, no. 14, p. 4026.

    Article  CAS  PubMed  Google Scholar 

  19. Mazari, S.A., Ali, B.S., Jan, B.M., and Saeed, I.M., Int. J. Greenh. Gas Control, 2014, vol. 31, p. 214.

    Article  CAS  Google Scholar 

  20. Lecoeur, M., Vérones, V., Vaccher, C., Bonte, J.P., Lebegue, N., and Goossens, J.F., Eur. J. Pharm. Sci., 2012, vol. 45, no. 5, p. 559.

    Article  CAS  PubMed  Google Scholar 

  21. Santoke, H., Tong, A.Y.C., Mezyk, S.P., Johnston, K.M., Braund, R., Cooper, W.J., and Peake, B.M., J. Environ. Eng., 2015, vol. 141, no. 10, p. 1.

    Article  CAS  Google Scholar 

  22. Smith, M.B. and March, J., March’s Advanced Organic Chemistry Reactions, Mechanisms, and Structure, Chichester: Wiley, 2010.

    Google Scholar 

  23. Dhiman, V., Balhara, A., Singh, S., Tiwari, S., Gananadhamu, S., and Talluri, M.V.N.K., J. Pharm. Biomed. Anal., 2021, vol. 199, p. 114037.

    Article  CAS  PubMed  Google Scholar 

  24. Watkins, M.A., Pitzenberger, S., and Harmon, P.A., J. Pharm. Sci., 2013, vol. 102, no. 5, p. 1554.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, G.Z., Li, X.L., Dai, J.J., and Xu, H.J., J. Org. Chem., 2014, vol. 79, no. 15, p. 7220.

    Article  CAS  PubMed  Google Scholar 

  26. Singh, D.K., Sahu, A., Wani, A.A., Bharatam, P.V., Chakraborti, A.K., Giri, S., and Singh, S., J. Pharm. Sci., 2020, vol. 109, no. 6, p.1883.

    Article  CAS  PubMed  Google Scholar 

  27. ICH, Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk M7 (R1), Geneva: Int. Council for Harmonization, 2017.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge Dr. Reddy’s Laboratories for providing gratis sample of venetoclax. The authors are thankful to the National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, for providing facilities to carry out this work. NIPER communication no.: NIPERHYD/2022/58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gananadhamu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, V., Ahirwar, S., Chaganti, S. et al. Photolytic and Oxidative Degradation Behavior of Anticancer Drug Venetoclax: Characterization of New Degradation Products Using High Resolution Mass Spectrometry. J Anal Chem 78, 522–534 (2023). https://doi.org/10.1134/S1061934823040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823040081

Keywords:

Navigation