Skip to main content
Log in

Methods for the Determination of Arsenic in Metallurgical Materials

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The review summarizes the results of publications on methods for determining arsenic in metallurgical materials from 2000 to 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Naboichenko, S.S., Mamyachenkov, S.V., and Karelov, S.V., Mysh’yak v tsvetnoi metallurgii (Arsenic in Nonferrous Metallurgy), Yekaterinburg: UrO RAN, 2004.

  2. Kopylov, N.I. and Kaminskii, Yu.D., Mysh’yak (Arsenic) Novosibirsk: Sib. Univ. Izd., 2004.

    Google Scholar 

  3. Long, G., Peng, Y., and Bradshaw, D., Miner. Eng., 2012, vols. 36–38, p. 179. https://doi.org/10.1016/j.mineng.2012.03.032

    Article  CAS  Google Scholar 

  4. Xin, Wb., Song, B., Huang, Cg., Song, M., and Song, G., Int. J. Miner. Metall. Mater., 2015, vol. 22, no. 7, p. 704. https://doi.org/10.1007/s12613-015-1125-8

    Article  CAS  Google Scholar 

  5. Safarzadeh, M.S., Moats, M.S., and Miller, J.D., Min. Process. Extr. Metall. Rev., 2014, vol. 35, no. 5, p. 283. https://doi.org/10.1080/08827508.2012.723651

    Article  CAS  Google Scholar 

  6. Nazari, A.M., Radzinski, R., and Ghahreman, A., Hydrometallurgy, 2017, vol. 174, p. 258. https://doi.org/10.1016/j.hydromet.2016.10.011

    Article  CAS  Google Scholar 

  7. Ostermeyer, P., Bonin, L., Folens, K., Verbruggen, F., García-Timermans, C., Verbeken, K., Rabaey, K., and Hennebel, T., J. Hazard. Mater., 2021, vol. 409, p. 124418. https://doi.org/10.1016/j.jhazmat.2020.124418

    Article  CAS  PubMed  Google Scholar 

  8. Mondal, P., Majumder, C., and Mohanty, B., J. Hazard. Mater., 2006, vol. 137, p. 464. https://doi.org/10.1016/j.jhazmat.2006.02.023

    Article  CAS  PubMed  Google Scholar 

  9. Ruja, B., Chakrabortty, S., Nayak, J., and Chatterjee, R., S. Afr. J. Chem. Eng., 2021, vol. 37, p. 214. https://doi.org/10.1016/j.sajce.2021.06.003

    Article  Google Scholar 

  10. Brooks, R.R., Ryan, D.E., and Zhang, H., Anal. Chim. Acta, 1981, vol. 131. https://doi.org/10.1016/S0003-2670(01)93528-7

  11. Dominguez-Alvarez, J., Talanta, 2020, vol. 212, p. 120803. https://doi.org/10.1016/j.talanta.2020.120803

    Article  CAS  PubMed  Google Scholar 

  12. Mikheev, I.V., Karpukhina, E.A., Usol’tseva, L.O., Samarina, T.O., Volkov, D.S., and Proskurnin, M.A., Inorg. Mater., 2017, vol. 53, p. 1422.

    Article  CAS  Google Scholar 

  13. Behari, J.R. and Prakash, R., Chemosphere, 2006, vol. 63, no. 1, p. 17. https://doi.org/10.1016/j.chemosphere.2005.07.073

    Article  CAS  PubMed  Google Scholar 

  14. Pu, S., Sun, H., Hou, X., and Xu, K., Anal. Chim. Acta, 2021, vol. 1144, p. 61.

    Article  CAS  PubMed  Google Scholar 

  15. Rastegaev, O.Yu., Tolokonnikova, T.P., Malishevskii, A.O., and Chupis, V.N., Teor. Prikl. Ekol., 2011, no. 4, p. 103.

  16. Anawar, H.Md., Talanta, 2012, vol. 88, p. 30. https://doi.org/10.1016/j.talanta.2011.11.068

    Article  CAS  PubMed  Google Scholar 

  17. Yang, H., He, M., and Wang, X., Environ. Geochem. Health, 2015, vol. 37, p. 21. https://doi.org/10.1007/s10653-014-9627-2

    Article  CAS  PubMed  Google Scholar 

  18. Burylin, M.Y., J. Anal. Chem., 2015, vol. 70, no. 1, p. 39. https://doi.org/10.1134/S1061934815010050

    Article  CAS  Google Scholar 

  19. Schneider, M., Cadorim, H.R., Welz, B., Carasek, E., and Feldmann, J., Talanta, 2018, vol. 188, p. 722. https://doi.org/10.1016/j.talanta.2018.06.052

    Article  CAS  PubMed  Google Scholar 

  20. Luvonga, C., Rimmer, C.A., Yu, L.L., and Lee, S.B., J. Food Compos. Anal., 2021, vol. 96, p. 103729. https://doi.org/10.1016/j.jfca.2020.103729

    Article  CAS  Google Scholar 

  21. Kara, S., Chormey, D.S., Saygılar, A., and Bakırdere, S., Food Chem., 2021, vol. 356, p. 129706. https://doi.org/10.1016/j.foodchem.2021.129706

    Article  CAS  PubMed  Google Scholar 

  22. Sorbo, A., Turco, A.C., Gregorio, M.D., and Ciaralli, L., Food Control, 2014, vol. 44, p. 159. https://doi.org/10.1016/j.foodcont.2014.03.049

    Article  CAS  Google Scholar 

  23. Cheng, L., Yang, X., Shi, M., and Zhang, W., J. Chromatogr. A, 2020, vol. 1619, p. 460915. https://doi.org/10.1016/j.chroma.2020.460915

    Article  CAS  PubMed  Google Scholar 

  24. Novoselov, A.N., Nauka Sovrem., 2010, no. 4-2, p. 9.

  25. Afridi, H.I., Kazi, T.G., Kazi, A.G., Shah, F., Wadhwa, S.K., Kolachi, N.F., Shah, A.Q., Baig, J.A., and Kazi, N., Biol. Trace Elem. Res., 2011, vol. 144, p. 164. https://doi.org/10.1007/s12011-011-9063-4

    Article  CAS  PubMed  Google Scholar 

  26. Bahrami, A., Sathyapalan, T., Moallem, S.A., and Sahebkar, A., J. Hazard. Mater., 2020, vol. 400, p. 123160. https://doi.org/10.1016/j.jhazmat.2020.123160

    Article  CAS  PubMed  Google Scholar 

  27. Rahaman, Md.S., Rahman, Md.M., Mise, N., Sikder, Md.T., Ichihara, G., Uddin, Md.K., Kurasaki, M., and Ichihara, S., Environ. Pollut., 2021, vol. 289, p. 117940.

    Article  CAS  PubMed  Google Scholar 

  28. Leermakers, M., Baeyens, W., Gieter, M.De., Smedts, B., Meert, C., Bisschop, H.C.De., Morabito, R., and Quevauviller, Ph., TrAC, Trends Anal. Chem., 2006, vol. 25, no. 1, p. 1. https://doi.org/10.1016/j.trac.2005.06.004

    Article  CAS  Google Scholar 

  29. Jain, C.K. and Ali, I., Water Res., 2000, vol. 17, p. 4304. https://doi.org/10.1016/S0043-1354(00)00182-2

    Article  Google Scholar 

  30. Shumilova, M.A., Vestn. Udmurt. Univ., 2012, no. 4, p. 69.

  31. Anawar, MdH., Talanta, 2012, no. 88, p. 30. https://doi.org/10.1016/j.talanta.2011.11.068

  32. Rajakovic, L.V., Todorovic, Z.N., Rajakovic-Ognjanovic, V.N., and Onjia, A.E., J. Serb. Chem., 2013, vol. 78, no. 10, p. 1461. https://doi.org/10.2298/JSC130315064R

    Article  CAS  Google Scholar 

  33. Liu, Z.-G. and Huang, X.-J., TrAC, Trends Anal. Chem., 2014, vol. 60, p. 25. https://doi.org/10.1016/j.trac.2014.04.014

    Article  CAS  Google Scholar 

  34. Ma, J., Sengupta, M.K., Yuan, D., and Dasgupta, P.K., Anal. Chim. Acta, 2014, vol. 831, p. 1. https://doi.org/10.1016/j.aca.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  35. Guo, Z., Yang, M., and Huang, X.-J., Curr Opin. Electrochem., 2017, vol. 3, p. 130. https://doi.org/10.1016/j.coelec.2017.08.002

    Article  CAS  Google Scholar 

  36. Xu, X., Niu, X., Li, X., Li, Z., Du, D., and Lin, Y., Sens. Actuators, B, 2020, vol. 315, p. 128100. https://doi.org/10.1016/j.snb.2020.128100

    Article  CAS  Google Scholar 

  37. Welna, M., Szymczycha-Madeja, A., and Pohl, P., TrAC, Trends Anal. Chem., 2015, vol. 65, p. 122. https://doi.org/10.1016/j.trac.2014.11.007

    Article  CAS  Google Scholar 

  38. Sadee, B., Foulkes, M.E., and Hill, S.J., J. Anal. At. Spectrom., 2015, vol. 30, p. 102. https://doi.org/10.1039/C4JA00269E

    Article  CAS  Google Scholar 

  39. Jinadasa, K.K., Pena-Vazquez, E., Bermejo-Barrera, P., and Moreda-Pineiro, A., Microchem. J., 2022, vol. 179, p. 107472. https://doi.org/10.1016/j.microc.2022.107472

    Article  CAS  Google Scholar 

  40. Sanchez-Rodas D., Sanchez de la Campa, A.M., and Alsioufi, L., Anal. Chim. Acta, 2015, vol. 898, p. 1. https://doi.org/10.1016/j.aca.2015.09.043

    Article  CAS  PubMed  Google Scholar 

  41. Braeuer, S. and Goessler, W., Anal. Chim. Acta, 2019, vol. 1073, p. 1. https://doi.org/10.1016/j.aca.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  42. Yu, H., Li, C., Tian, Y., and Jiang, X., Microchem. J., 2020, vol. 152, p. 104312. https://doi.org/10.1016/j.microc.2019.104312

    Article  CAS  Google Scholar 

  43. Shalvi Gautam, V., Verma, K.L., Suman Jain, V.K., and Kumar, A., Environ. Nanotechnol. Monit. Manage., 2022, vol. 18, p. 100730. https://doi.org/10.1016/j.enmm.2022.100730

    Article  CAS  Google Scholar 

  44. Yu, H., Li, C., Tian, Y., and Jiang, X., Microchem. J., 2020, vol. 152, p. 104312. https://doi.org/10.1016/j.microc.2019.104312

    Article  CAS  Google Scholar 

  45. Reis, V.A.T. and Duarte, A.C., TrAC, Trends Anal. Chem., 2018, vol. 102, p. 170. https://doi.org/10.1016/j.trac.2018.02.003

    Article  CAS  Google Scholar 

  46. Reid, M.S., Karen, S.H., Schofield, J.R.M., Uppal, J.S., Lin, Y., Lu, X., Peng, H., and Le, X.C., TrAC, Trends Anal. Chem., 2020, vol. 123, p. 115770. https://doi.org/10.1016/j.trac.2019.115770

    Article  CAS  Google Scholar 

  47. Williams, W.J., Handbook of Anion Determination, London: Butterworth-Heinemann, 2013.

    Google Scholar 

  48. Grudpan, K., Worakijcharoenchai, N., Sooksamiti, P., Jakmunee, J., and Christian, G., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2003, vol. 42, no. 12, p. 2939.

    Google Scholar 

  49. Abrazheev, R.V., Zorin, A.D., and Pegeeva, E.Yu., Anal. Kontrol’, 2003, vol. 7, no. 1, p. 22.

    Google Scholar 

  50. Skupnevskii, S.V., Zavod. Lab., Diagn. Mater., 2006, vol. 72, no. 8, p. 13.

    CAS  Google Scholar 

  51. Pillai, A., Sunita, G., and Gupta, V.K., Anal. Chim. Acta, 2000, vol. 408, p. 111. https://doi.org/10.1016/S0003-2670(99)00832-6

    Article  CAS  Google Scholar 

  52. Yonga, C., Procedia Eng., 2011, vol. 24, p. 447. https://doi.org/10.1016/j.proeng.2011.11.2674

    Article  CAS  Google Scholar 

  53. Al-Harahsheh, M., Kingman, S., Somerfield, C., and Ababneh, F., Anal. Chim. Acta, 2009, vol. 638, p. 101. https://doi.org/10.1016/j.aca.2009.02.030

    Article  CAS  PubMed  Google Scholar 

  54. Doronina, M.S., Shiryaeva, O.A., Filatova, D.G., Baranovskaya, V.B., and Karpov, Yu.A., Inorg. Mater., 2014, vol. 50, p. 1412.

    Article  CAS  Google Scholar 

  55. Belozerova, A.A., Maiorova, A.V., Pechishcheva, N.V., Boyarnikova, N.G., and Shunyaev, K.Yu., Zavod. Lab., Diagn. Mater., 2016, vol. 82, no. 6, p. 10.

    CAS  Google Scholar 

  56. Manshilin, V.I., Vinokurova, E.K., and Doroshenko, A.I., Metody Ob”ekty Khim. Anal., 2008, vol. 3, no. 2, p. 163.

    Google Scholar 

  57. Doronina, M.S., Shiryaeva, O.A., Filatova, D.G., Petrov, A.M., Dal’nova, O.A., Baranovskaya, V.B., and Karpov, Yu.A., Inorg. Mater., 2014, vol. 50, p. 1426.

    Article  CAS  Google Scholar 

  58. Maiorova, A.V., Mel’chakov, S.Yu., Okuneva, T.G., Vorontsova, K.A., and Mashkovtsev, M.A., Anal. Kontrol’. 2017, vol. 21, no. 3, p. 281.

    Google Scholar 

  59. Maiorova, A.V., Belozerova, A.A., Mel’chakov, S.Yu., Mashkovtsev, M.A., Suvorkina, A.S., and Shunyaev, K.Yu., J. Anal. Chem., 2019, vol. 74, no. 1 (suppl.), p. 18. https://doi.org/10.1134/S1061934819070141

    Article  CAS  Google Scholar 

  60. Maiorova, A.V., Belozerova, A.A., Okuneva, T.G., and Shunyaev, K.Yu., J. Anal. Chem., 2020, vol. 75, no. 5, p. 587.

    Article  CAS  Google Scholar 

  61. Chen, J.-F., Huang, H.-B., Chen, Z.-J., Zhong, J.-H., and Zheng, Z.-Z., Metall. Anal., 2011, vol. 31, no. 3, p. 42.

    CAS  Google Scholar 

  62. Yakimovich, P.V. and Alekseev, A.V., Tr. VIAM, 2015, vol. 3, p.3. https://doi.org/10.18577/2307-6046-2015-0-3-9-9

    Article  Google Scholar 

  63. Hu, Z., Gao, S., Hu, S., Yuan, H., Liu, X., and Liu, Y., J. Anal. At. Spectrom., 2005, vol. 20, p. 1263. https://doi.org/10.1039/B507200J

    Article  CAS  Google Scholar 

  64. Filatova, D.G., Doronina, M.S., Dal’nova, O.A., Shiryaeva, O.A., and Karpov, Yu.A., Inorg. Mater., 2014, vol. 50, p. 1417.

    Article  CAS  Google Scholar 

  65. Li, B., He, H., Shi, S., Ma, X., Wen, H., and Lu, C., J. Anal. At. Spectrom., 2002, vol. 17, p. 371. https://doi.org/10.1039/B107161K

    Article  CAS  Google Scholar 

  66. Santos, E.J., Beatriz, H.A., Olkuszewski, J.L., Saint’Pierre, T.D., and Curtius, A.J., Braz. Arch. Biol. Technol., 2005, vol. 48, no. 5, p. 681. https://doi.org/10.1590/S1516-89132005000600002

    Article  Google Scholar 

  67. Alekseev, A.V. and Yakimovich, P.V., Tr. VIAM, 2014, no. 11, p. 1. https://doi.org/10.18577/2307-6046-2020-0-11-3-10

  68. Chen, Z.-C. and Jiang, S.-J., J. Anal. At. Spectrom., 2006, vol. 21, p. 566. https://doi.org/10.1039/B600409A

    Article  CAS  Google Scholar 

  69. Hasegawa, S., Mater. Trans., 2008, vol. 49, no. 9, p. 2054. https://doi.org/10.2320/matertrans.MRA2008135

    Article  CAS  Google Scholar 

  70. Huang, D., Liao, S., and Dang, Z., Rare Met. Mater. Eng., 2006, vol. 35, no. 2, p. 333.

    CAS  Google Scholar 

  71. Pupyshev, A.A. and Epova, E.N., Anal. Kontrol’, 2001, vol. 5, no. 4, p. 335.

    Google Scholar 

  72. Alekseev, A.V., Yakimovich, P.V., and Legkodukhova, I.S., Tr. VIAM, 2020, no. 11, p. 3. https://doi.org/10.18577/2307-6046-2020-0-11-3-10

  73. Welz, B. and Sperling, M., Atomic Absorption Spectrometry, Weinheim: Wiley, 2008.

    Google Scholar 

  74. Safarova, V.I., Shaidulina, G.F., Mikheeva, T.N., Kudasheva, F.Kh., and Nizamutdinova, N.R., Inorg. Mater., 2011, vol. 47, p. 1500.

    Article  CAS  Google Scholar 

  75. Nekhoda, E.S., Bannykh, L.N., Kudinova, T.F., Sedykh, E.M., and Kurbakova, I.V., Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 6, p. 3.

    CAS  Google Scholar 

  76. Sakuragawa, A., Taniai, T., and Uzawa, A., J. Iron Steel Inst. Jpn., 2003, vol. 89, no. 9, p. 927.

    Article  Google Scholar 

  77. Pupyshev, A.A., Atomno-absorbtsionnyi spektral’nyi analiz (Atomic Absorption Spectral Analysis), Moscow: Tekhnosfera, 2009.

  78. Ondar, U.V., Karpukova, O.M., Butakov, E.M., Shitenkova, E.A., and Smagunova, A.N., Anal. Kontrol’. 2000, vol. 4, no. 1, p. 66.

    Google Scholar 

  79. Khokhlova, I.V., Kuz’mina, T.G., and Roshchina, I.A., J. Anal. Chem., 2014, vol. 69, no. 7, p. 774. https://doi.org/10.7868/S0044450214070093

    Article  Google Scholar 

  80. Liu, Q., Spectrosc. Spectral Anal., 2000, vol. 20, no. 1, p. 84.

    Google Scholar 

  81. Chanvaivit, S. and Brindle, I.D., J. Anal. At. Spectrom., 2000, vol. 15, no. 8, p. 1015. https://doi.org/10.1039/B002263M

    Article  CAS  Google Scholar 

  82. Matsumoto, A., Takeuchi, H., and Nakahara, T., Tetsu Hagane, 2002, vol. 88, no. 5, p. 270. https://doi.org/10.2355/tetsutohagane1955.88.5_270

    Article  CAS  Google Scholar 

  83. D’Ulivo, A., Bramanti, E., Lampugnani, L., and Zamboni, R., Spectrochim. Acta, Part B, 2001, vol. 56, no. 10, p. 1893. https://doi.org/10.1016/S0584-8547(01)00341-X

    Article  Google Scholar 

  84. Wagatsuma, K., Anal. Sci., 2003, vol. 19, p. 325. https://doi.org/10.2116/analsci.19.325

    Article  CAS  PubMed  Google Scholar 

  85. Singh, N., Sarkar, A.K., Ramchandran, R., and Lal, K., Asian J. Chem., 2003, vol. 15, no. 3, p. 1327.

    CAS  Google Scholar 

  86. Taniai, T., Sakuragawa, A., and Uzawa, A., J. Iron Steel Inst. Jpn., 2004, vol. 44, no. 11, p. 1852. https://doi.org/10.2355/isijinternational.44.1852

    Article  CAS  Google Scholar 

  87. Wiltsche, H., Brenner, I.B., Knapp, G., and Prattes, K., J. Anal. At. Spectrom., 2007, vol. 22, p. 1083. https://doi.org/10.1039/B618536N

    Article  CAS  Google Scholar 

  88. Chowdary, G.S., Sunilkumar, B., and Kumar, A., Explor. Res. At. Miner., 2007, vol. 17, p. 209.

    Google Scholar 

  89. Smirnov, E.V., Sidorenko, E.K., and Ermolaeva, T.N., Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2012, no. 2, p. 97.

  90. Li, X., Su, Y., Xu, K., Houa, X., and Lv, Y., Talanta, 2007, vol. 72, p. 1728. https://doi.org/10.1016/j.talanta.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  91. Zheng, H.D., Liu, B., Zhang, Y.P., and Wu, L.Y., Metall. Anal., 2010, vol. 28, no. 3, p. 32.

    Google Scholar 

  92. Chen, J., Huang, H., Chen, Z., Zhong, J., and Zheng, Z., Metall. Anal., 2011, vol. 31, no. 3, p. 42.

    CAS  Google Scholar 

  93. Macarovscha, G.T., Bortoleto, G.G., and Cadore, S., Talanta, 2007, vol. 71, p. 1150. https://doi.org/10.1016/j.talanta.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  94. Li, Z., Yang, X., Guo, Y., Li, H., and Feng, Y., Talanta, 2008, vol. 74, p. 915. https://doi.org/10.1016/j.talanta.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  95. Song, X.-J., Guo, P.-R., Chen, H.-T., and Duan, T.-C., Chin. J. Anal. Chem., 2007, vol. 35, no. 8, p. 1183. https://doi.org/10.1016/S1872-2040(07)60078-4

    Article  CAS  Google Scholar 

  96. Zhou, C.Y., Qu, W., Li, W.J., and Cai, L.L., Key Eng. Mater., 2016, vol. 723, p. 579. https://doi.org/10.4028/www.scientific.net/KEM.723.579

    Article  Google Scholar 

  97. Paula, J.F.R., Froes-Silva, R.E.S., and Ciminelli, V.S.T., Microchem. J., 2012, vol. 104, p. 12. https://doi.org/10.1016/j.microc.2012.03.019

    Article  CAS  Google Scholar 

  98. Sipola, T., Alatarvas, T., Fabritius, T., and Peramaki, P., ISIJ Int., 2016, vol. 56, no. 8, p. 1445. https://doi.org/10.2355/isijinternational.ISIJINT-2016-071

    Article  CAS  Google Scholar 

  99. Thangavel, S., Dash, K., Dhavile, S.M., and Sahayam, A.C., Talanta, 2015, vol. 131, p. 505. https://doi.org/10.1016/j.talanta.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  100. Xiong, C.X., Liu, Y.R., and Gu, J.P., Adv. Mater. Res., 2011, vol. 304, p. 328. https://doi.org/10.4028/www.scientific.net/AMR.304.328

    Book  Google Scholar 

  101. Itagaki, T., Ashino, T., Takada, K., and Wagatsuma, K., Bunseki Kagaku, 2010, vol. 59, no. 1, p. 43. https://doi.org/10.2116/bunsekikagaku.59.43

    Article  Google Scholar 

  102. Agrawal, Y.K. and Vyas, J.M., Rev. Anal. Chem., 2009, vol. 28, no. 2, p. 93. https://doi.org/10.1515/REVAC.2009.28.2.93

    Article  CAS  Google Scholar 

  103. Chernikova, I.I., Fursova, S.S., and Ermolaeva, T.N., Zavod. Lab., Diagn. Mater., 2020, vol. 86, no. 3, p. 11. https://doi.org/10.26896/1028-6861-2020-86-3-11-19

    Article  CAS  Google Scholar 

  104. Inoshita, S., Suzuki, S., Okada, Y., Kato, M., Hirai, S., Kimura, A., Hatsukawa, Y., Toh, Y., Koizumi, M., and Oshima, M., Tetsu Hagane, 2008, vol. 94, no. 9, p. 345. https://doi.org/10.2355/tetsutohagane.94.345

    Article  CAS  Google Scholar 

  105. Taseska, M., Jacimovic, R., Stibilj, V., Stafilov, T., Makreski, P., and Jovanovski, G., Appl. Radiat. Isot., 2012, vol. 70, no. 1, p. 35. https://doi.org/10.1016/j.apradiso.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  106. Kimura, A. and Oshima, M., Tetsu Hagane, 2004, vol. 90, no. 12, p. 1004. https://doi.org/10.2355/tetsutohagane1955.90.12_1004

    Article  CAS  Google Scholar 

  107. Ensafi, A.A., Ring, A.C., and Fritsch, I., Electroanalysis, 2010, vol. 22, no. 11, p. 1175. https://doi.org/10.1002/elan.200900347

    Article  CAS  Google Scholar 

  108. Junsomboon, J., Sooksamiti, P., Grudpan, K., Lapanantnoppakhun, S., Thavornyuthikarn, P., and Jakmunee, J., Chiang Mai J. Sci., 2009, vol. 36, no. 3, p. 369.

    CAS  Google Scholar 

  109. Nemodruk, A.A., Analiticheskaya khimiya mysh’yaka (Analytical Chemistry of Arsenic), Mocow: Nauka, 1976, p. 147.

  110. Karpov, Yu.A. and Savostin, A.P., Metody probootbora i probopodgotovki (Sampling and Sample Preparation Methods), Moscow: Laboratoriya znanii, 2010, p. 88.

  111. Itagaki, T., Takada, K., Wagatsuma, K., and Abiko, K., Tetsu Hagane, 2003, vol. 89, no. 9, p. 890. https://doi.org/10.2355/tetsutohagane1955.89.9_890

    Article  Google Scholar 

  112. Huang, D., Shijun, L., and Dang, Z., Rare Met. Mater. Eng., 2006, vol. 35, no. 2, p. 333.

    CAS  Google Scholar 

  113. Liu, B., Kim, K.H., Kumar, V., and Kim, S., J. Hazard. Mater., 2020, vol. 388, p. 121815. https://doi.org/10.1016/j.jhazmat.2019.121815

    Article  CAS  PubMed  Google Scholar 

  114. Mohan, D. and Pittman, C.U., J. Hazard. Mater., 2007, vol. 142, nos. 1–2, p. 1. https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  115. Bai, Y., Tang, X., Sun, L., Yin, W., Hu, G., Liu, M., and Gong, Y., Chem. Eng. J., 2022, vol. 431, p. 134143. https://doi.org/10.1016/j.cej.2021.134143

    Article  CAS  Google Scholar 

  116. Antoniadis, V., Shakoor, M.B., Al-Solaimani, S.G., and Wang, H., Chem. Eng. J., 2020, vol. 396, p. 125195. https://doi.org/10.1016/j.cej.2020.125195

    Article  CAS  Google Scholar 

  117. Gallegos-Garcia, M., Ramirez-Muniz, K., and Song, S., Miner. Process. Extr. Metall. Rev., 2012, vol. 33, no. 5, p. 301. https://doi.org/10.1080/08827508.2011.584219

    Article  CAS  Google Scholar 

  118. Hao, L., Liu, M., Wang, N., and Li, G., RSC Adv., 2018, vol. 8, no. 69, p. 39545. https://doi.org/10.1039/C8RA08512A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guan, X., Du, J., Meng, X., Sun, Y., Sun, B., and Hu, Q., J. Hazard. Mater., 2012, vols. 215–216, p. 1. https://doi.org/10.1016/j.jhazmat.2012.02.069

    Article  CAS  PubMed  Google Scholar 

  120. Yan, L., Hu, S., and Jing, C., J. Environ. Sci., 2016, vol. 49, p. 74. https://doi.org/10.1016/j.jes.2016.07.007

    Article  CAS  Google Scholar 

  121. Rathia, B.S. and Kumar, P.S., J. Hazard. Mater., 2021, vol. 418, p. 126299. https://doi.org/10.1016/j.jhazmat.2021.126299

    Article  CAS  Google Scholar 

  122. Ordinartsev, D.P., Pechishcheva, N.V., Valeeva, A.A., Zaitseva, P.V., Korobitsyna, A.D., Belozerova, A.A., Sushnikova, A.A., Petrova, S.A., Shunyaev, K.Yu., and Rempel’, A.A., Russ. J. Phys. Chem A, 2022, vol. 96, no. 11, p. 2408.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-73-20039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belozerova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belozerova, A.A., Pechishcheva, N.V. & Shunyaev, K.Y. Methods for the Determination of Arsenic in Metallurgical Materials. J Anal Chem 78, 294–302 (2023). https://doi.org/10.1134/S1061934823030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823030036

Keywords:

Navigation