Skip to main content
Log in

Potentiometric Sensors Based on Nafion Membranes Modified by PEDOT for Determining Procaine, Lidocaine, and Bupivacaine in Aqueous Solutions and Pharmaceuticals

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Hybrid materials based on perfluorinated sulfonic acid Nafion-type membranes and poly-3,4-ethylenedioxythiophene (PEDOT) with a gradient distribution of the latter along the film length were synthesized by in situ oxidative polymerization. The initial monomer concentration (0.01 and 0.002 M) and the concentration ratio of the monomer to the oxidant (1/1.25 and 1/2.5) were varied. We studied the effect of the equilibrium and transport properties of the obtained materials on the characteristics of cross-sensitive DP-sensors (analytical signal is the Donnan potential) in aqueous solutions of procaine, lidocaine, and bupivacaine hydrochlorides, including those containing sodium chloride, in a concentration range from 1.0 × 10–4 to 1.0 × 10–2 M and pH from 2 to 6. The relative error in determining the active substance in the Novokain preparation using a DP-sensor based on the Nafion/PEDOT membrane (0.002 M, 1/2.5) was 0.4%. An array of DP-sensors based on Nafion and Nafion/PEDOT (0.002 M, 1/1.25) membranes was used to determine bupivacaine hydrochloride and sodium chloride in the Markain® Spinal preparation with an error of 11 and 6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Storms, M.L. and Stewart, J.T., J. Pharm. Biomed. Anal., 2002, vol. 30, no. 1, p. 49.

    CAS  PubMed  Google Scholar 

  2. Shuang, S. and Choi, M.M.F., J. Chromatogr. A, 2001, vol. 919, no. 2, p. 321.

    CAS  PubMed  Google Scholar 

  3. Fijałek, Z., Baczyński, E., Piwońska, A., and Warowna-Grześkiewicz, M., J. Pharm. Biomed. Anal., 2005, vol. 37, no. 5, p. 913.

    PubMed  Google Scholar 

  4. Xu, L.X., Shen, Y.X., Wang, H.Y., Jiang, J.G., and Xiao, Y., Spectrochim. Acta, Part A, 2003, vol. 59, no. 13, p. 3103.

    Google Scholar 

  5. Liu, L.D., Liu, Y., Wang, H.Y., Sun, Y., Ma, L., and Tang, B., Talanta, 2000, vol. 52, no. 6, p. 991.

    CAS  PubMed  Google Scholar 

  6. Chen, Y.H., Tian, F.S., and Song, M.P., J. Anal. Chem., 2009, vol. 64, no. 4, p. 366.

    CAS  Google Scholar 

  7. Liu, A.L., Wang, J.D., Chen, W., Xia, X.H., Chen, Y.Z., and Lin, X.H., J. Solid State Electrochem., 2012, vol. 16, no. 4, p. 1343.

    CAS  Google Scholar 

  8. Güngör, Ö., Özcan, İ., Ali Erdoğan, M., Ateş, B., and Köytepe, S., Anal. Lett., 2019, vol. 53, no. 2, p. 228.

    Google Scholar 

  9. Bergamini, M.F., Santos, A.L., Stradiotto, N.R., and Zanoni, M.V.B., J. Pharm. Biomed. Anal., 2007, vol. 43, no. 1, p. 315.

    CAS  PubMed  Google Scholar 

  10. Kulapina, E.G. and Barinova, O.V., J. Anal. Chem., 2001, vol. 56, no. 5, p. 457.

    CAS  Google Scholar 

  11. Lei, L., Su, X., Xie, Q., He, J., and Yao, S., Microchim. Acta, 2000, vol. 134, nos. 1–2, p. 63.

    CAS  Google Scholar 

  12. Giahi, M., Pournaghdy, M., and Rakhshaee, R., J. Anal. Chem., 2009, vol. 64, no. 2, p. 195.

    CAS  Google Scholar 

  13. Li, N., Duan, J., and Chen, G., Anal. Sci., 2003, vol. 19, no. 12, p. 1587.

    CAS  PubMed  Google Scholar 

  14. Wu, K., Wang, H., Chen, F., and Hu, S., Bioelectrochemistry, 2006, vol. 68, no. 2, p. 144.

    CAS  PubMed  Google Scholar 

  15. Zhang, X., Zhao, D., Feng, L., Jia, L., and Wang, S., Microchim. Acta, 2010, vol. 169, nos. 1–2, p. 153.

    CAS  Google Scholar 

  16. Rahbar, N., Ramezani, Z., and Ghanavati, J., Chin. Chem. Lett., 2016, vol. 27, no. 6, p. 837.

    CAS  Google Scholar 

  17. Oliveira, R.T.S., Salazar-Banda, G.R., Ferreira, V.S., Oliveira, S.C., and Avaca, L.A., Electroanalysis, 2007, vol. 19, no. 11, p. 1189.

    CAS  Google Scholar 

  18. Michalska, K., Pajchel, G., and Tyski, S., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2004, vol. 800, nos, 1–2, p. 203.

    CAS  Google Scholar 

  19. Başmakçi Akyil, G., Şatana Kara, H.E., Yarimkaya Baş, S., Ertaş, N., and Günden Göğer, N., Turk. J. Chem., 2014, no. 38, p. 756.

  20. Li, N., Chi, Y., Wang, J., Duan, J., and Chen, G., J. Biolumin. Chemilumin., 2003, vol. 18, no. 3, p. 125.

    Google Scholar 

  21. Paseková, H. and Polášek, M., Talanta, 2000, vol. 52, no. 1, p. 67.

    PubMed  Google Scholar 

  22. Chen, X.W., Song, X., and Wang, J.H., Anal. Bioanal. Chem., 2006, vol. 385, no. 4, p. 737.

    CAS  PubMed  Google Scholar 

  23. Amin, A.S. and El-Didamony, A.M., Anal. Sci., 2003, vol. 19, no. 10, p. 1457.

    CAS  PubMed  Google Scholar 

  24. Parshina, A.V., Denisova, T.S., Safronova, E.Yu., Bobreshova, O.V., and Yaroslavtsev, A.B., Nanotechnol. Russ., 2015, vol. 10, nos. 9–10, p. 748.

    CAS  Google Scholar 

  25. Parshina, A.V., Denisova, T.S., Safronova, E.Yu., Karavanova, Yu.A., Safronov, D.V., Bobreshova, O.V., and Yaroslavtsev, A.B., J. Anal. Chem., 2017, vol. 72, no. 12, p. 1243.

    CAS  Google Scholar 

  26. Safronova, E., Parshina, A., Kolganova, T., Bobreshova, O., Pourcelly, G., and Yaroslavtsev, A., J. Electroanal. Chem., 2018, vol. 816, p. 21.

    CAS  Google Scholar 

  27. Shi, H., Liu, C., Jiang, Q., and Xu, J., Adv. Electron. Mater., 2015, vol. 1, no. 4, 1500017.

    Google Scholar 

  28. Sun, K., Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., Isikgor, F.H., and Ouyang, J., J. Mater. Sci.: Mater. Electron., 2015, vol. 26, no. 7, p. 4438.

    CAS  Google Scholar 

  29. Hui, Y., Bian, C., Xia, S., Tong, J., and Wang, J., Anal. Chim. Acta, 2018, vol. 1022, p. 1.

    CAS  PubMed  Google Scholar 

  30. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Adv. Mater., 2000, vol. 12, no. 7, p. 481.

    CAS  Google Scholar 

  31. Jiang, F., Yue, R., Du, Y., Xu, J., and Yang, P., Biosens. Bioelectron., 2013, vol. 44, p. 127.

    CAS  PubMed  Google Scholar 

  32. Abirama Sundari, P.L. and Manisankar, P., J. Appl. Electrochem., 2011, vol. 41, no. 1, p. 29.

    Google Scholar 

  33. Üge, A., Zeybek, D.K., and Zeybek, B., J. Electroanal. Chem., 2018, vol. 813, p. 134.

    Google Scholar 

  34. Lin, J.M., Su, Y.L., Chang, W.T., Su, W.Y., and Cheng, S.H., Electrochim. Acta, 2014, vol. 149, p. 65.

    CAS  Google Scholar 

  35. Xu, G., Jarjes, Z.A., Desprez, V., Kilmartin, P.A., and Travas-Sejdic, J., Biosens. Bioelectron., 2018, vol. 107, p. 184.

    CAS  PubMed  Google Scholar 

  36. Zhang, K., Xu, J., Zhu, X., Lu, L., Duan, X., Hu, D., Dong, L., Sun, H., Gao, Y., and Wu, Y., J. Electroanal. Chem., 2015, vol. 739, p. 66.

    CAS  Google Scholar 

  37. Stenina, I.A., Il’ina, A.A., Pinus, I.Yu., Sergeev, V.G., and Yaroslavtsev, A.B., Russ. Chem. Bull., 2008, vol. 57, no. 11, p. 2261.

    CAS  Google Scholar 

  38. Yaroslavtsev, A.B., Stenina, I.A., Voropaeva, E.Yu., and Ilyina, A.A., Polym. Adv. Technol., 2009, vol. 20, p. 566.

    CAS  Google Scholar 

  39. Wang, P. and Olbricht, W.L., Chem. Eng. J., 2010, vol. 160, no. 1, p. 383.

    CAS  Google Scholar 

  40. De Leeuw, D.M., Kraakman, P.A., Bongaerts, P.F.G., Mutsaers, C.M.J., and Klaassen, D.B.M., Synth. Met., 1994, vol. 66, no. 3, p. 263.

    CAS  Google Scholar 

  41. Vreeland, R.F., Atcherley, C.W., Russell, W.S., Xie, J.Y., Lu, D., Laude, N.D., Porreca, F., and Heien, M.L., Anal. Chem., 2015, vol. 87, p. 2600.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ganesana, M., Trikantzopoulos, E., and Venton, B.J., Procedia Technol., 2017, vol. 27, p. 229.

    Google Scholar 

  43. Voropaeva, E.Yu., Sanginov, E.A., Volkov, V.I., Pavlov, A.A., Shalimov, A.S., Stenina, I.A., and Yaroslavtsev, A.B., Russ. J. Inorg. Chem., 2008, vol. 53, no. 10, p. 1536.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-38-60045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Parshina.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, T.S., Yurova, P.A., Kolganova, T.S. et al. Potentiometric Sensors Based on Nafion Membranes Modified by PEDOT for Determining Procaine, Lidocaine, and Bupivacaine in Aqueous Solutions and Pharmaceuticals. J Anal Chem 75, 1072–1079 (2020). https://doi.org/10.1134/S106193482008016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482008016X

Keywords:

Navigation