Skip to main content
Log in

Preconcentration and determination of naproxen in water samples by functionalized multi-walled carbon nanotubes hollow fiber solid phase microextraction—HPLC

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A simple, sensitive and selective solid phase microextraction with hollow fiber-supported multi-walled carbon nanotube functionalization reinforced sol–gel combined HPLC method was proposed for the determination of naproxen in tap, well and river water samples. In this method, functionalized multi-walled carbon nanotubes (MWCNTs) were prepared and held in pores of hollow fiber with sol–gel technology by immersion of polypropylene hollow fiber segment into the sol of the functionalized MWCNTs/silica composite and ultrasonically treated at room temperature. Effect of main parameters such as volume of donor phase, pH, extraction time, desorption time, type of desorption solvent, sample ionic strength and stirring rate were studied. Under optimum conditions, linearity was observed in the range of 0.03–500 ng/mL, with correlation coefficients of 0.997. The relative standard deviation for three replicate determinations of 50 ng/mL of naproxen was 4.3%. Limit of detection and pre-concentration factor were 0.008 ng/mL and 198, respectively. In order to check the applicability of the proposed method, it was used to determine trace levels of naproxen in different water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amundsen, I., Øiestad, Å.M.L., Ekeberg, D., and Kristoffersen, L., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2013, vol. 927, p. 112.

    Article  CAS  Google Scholar 

  2. Freitas, D.F., Porto, C.E.D., Vieira, E.P., and Siqueira, M.E.P.B., J. Pharm. Biomed. Anal., 2010, vol. 51, p. 170.

    Article  Google Scholar 

  3. Bisesi, J.H., Bridges, W., and Klaine, S.J., Aquat. Toxicol., 2014, vol. 151, p. 88.

    Article  CAS  Google Scholar 

  4. Dubey, S.K., Saha, R.N., Jangala, H., and Pasha, S., J. Pharm. Anal., 2013, vol. 3, p. 466.

    Article  Google Scholar 

  5. Bymaster, F.P., Dreshfield-Ahmad, L.J., Threlkeld, P.G., Shaw, J.L., Thompson, L., Nel-son, D.L., Hemrick-Luecke, S.K., and Wong, D.T., Neuropsychopharmacology, 2001, vol. 25, p. 871.

    Article  CAS  Google Scholar 

  6. Hložek., T, Bursová, M., and Cabala, R., Clin. Biochem., 2015, vol. 48, p. 189.

    Article  Google Scholar 

  7. Ourion, D., Poirier, M.F., and Olie, J.P., Eur. Neuropsychopharmacol., 2009, vol. 19, p. 419.

    Google Scholar 

  8. Piacentini, M.F., Clinckers, R., Meeusen, R., Sarre, S., Ebinger, G., and Michotte, Y., Life Sci., 2012, vol. 73, p. 2433.

    Article  Google Scholar 

  9. Vu, R.L., Helmeste, D., Albers, L., and Reist, C., J. Chromatogr. B: Biomed. Sci. Appl., 1997, vol. 703, p. 195.

    Article  CAS  Google Scholar 

  10. de Souza, Filho., Bonifácio, F.N., Bedor, D.C.G., Ramos, V.L., de Sousa, C.E.M., Sardón, L.L.F., Gonçalves, T.M., Moreira, R.C.D., Leal, L.B., and de Santana, D.P., Clin. Ther., 2010, vol. 32, p. 2088.

    Article  Google Scholar 

  11. Rúa-Gómez, P.C. and Püttmann, W., Chemosphere, 2013, vol. 90, p. 1952.

    Article  Google Scholar 

  12. Rudaz, S., Stella, C., Balant-Gorgia, A.E., Fanali, S., and Veuthey, J.L., J. Pharm. Biomed. Anal., 2000, vol. 23, p. 107.

    Article  CAS  Google Scholar 

  13. Mandrioli, R., Mercolini, L., Cesta, R., Fanali, S., Amore, M., and Raggi, M.A., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 856, p. 88.

    Article  CAS  Google Scholar 

  14. Gur, E., Dremencov, E., Van De Kar, L.D., Lerer, B., and Newman, M.E., Eur. J. Pharmacol., 2002, vol. 436, p. 57.

    Article  CAS  Google Scholar 

  15. Horst, W.D. and Preskorn, S.H., J. Affective Disord., 1998, vol. 51, p. 237.

    Article  CAS  Google Scholar 

  16. van Eupen, J.T.H., Westheim, R., Deij, M.A., Meekes, H., Bennema, P., and Vlieg, E., Int. J Pharm., 2009, vol. 368, p. 146.

    Article  Google Scholar 

  17. Asafu-Adjaye, E.B., Faustino, P.J., Tawakkul, M.A., Anderson, L.W., Kwon, L.X., and Volpe, D.A., J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1854.

    Article  CAS  Google Scholar 

  18. Sanghavi, B.J. and Srivastava, A.K., Electrochim. Acta, 2011, vol. 56, p. 4188.

    Article  CAS  Google Scholar 

  19. Kennedy, S.H., Avedisova, A., Giménez-Montesinos, N., Belaïdi, C., and de Bodinat, C., Eur. Neuropsychopharmacol., 2014, vol. 24, p. 553.

    Article  CAS  Google Scholar 

  20. Deng, H., Teo, A.K.L., and Gao, Z., Sens. Actuators, B, 2014, vol. 191, p. 522.

    Article  CAS  Google Scholar 

  21. Zou, Y., Li, Y., Jin, H., Tang, H., Zou, D., Liu, M., and Yang, Y., Anal. Biochem., 2012, vol. 421, p. 378.

    Article  CAS  Google Scholar 

  22. Gupta, V.K., Singh, A.K., Kumawat, L., and Sen, K., Sens. Actuators, B, 2014, vol. 195, p. 98.

    Article  CAS  Google Scholar 

  23. Pesarico, A.P., Sampaio, T.B., Stangherlin, E.C., Mantovani, A.C., Zeni, G., and Nogueira, C.W., Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2014, vol. 54, p. 179.

    Article  CAS  Google Scholar 

  24. Li, H., Helm, P.A., Paterson, G., and Metcalfe, C.D., Chemosphere, 2011, vol. 83, p. 271.

    Article  CAS  Google Scholar 

  25. Devkar, T.B., Tekade, A.R., and Khandelwal, K.R., Colloids Surf., B, 2014, vol. 122, p. 143.

    Article  CAS  Google Scholar 

  26. Saracino, M.A., Mercolini, L., Carbini, G., Volterra, V., Quarta, A.L., Amore, M., and Raggi, M.A., J. Pharm. Biomed. Anal., 2014, vol. 95, p. 61.

    Article  CAS  Google Scholar 

  27. Beaudoin-Gobert, M. and Sgambato-Faure, V., Neuropharmacology, 2014, vol. 81, p. 15.

    Article  CAS  Google Scholar 

  28. Zhou, Y., Ren, Y., Ma, Z., Jia, G., Gao, X., Zhang, L, and Qin, X., J. Ethnopharmacol., 2012, vol. 141, p. 187.

    Article  CAS  Google Scholar 

  29. Sauve, E.N., Langodegard, M., Ekeberg, D., and Øiestad, Å.M.L., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2012, vol. 883, p. 177.

    Article  Google Scholar 

  30. Manier, D.H., Shelton, R.C., and Sulser, F., J. Affective Disord., 2001, vol. 65, p. 275.

    Article  CAS  Google Scholar 

  31. Spagou, K., Thessalonikeos, E., Henriques, T., Violante, D., Pouliopoulos, A., Raikos, N., Theodoridis, G., and Tsoukali, H., Toxicol. Lett., 2008, vol. 180.

  32. Warneck, J.B., Cheng, F.H.M., Barnes, M.J., Mills, J.S., Montana, J.G., Naylor, R.J., Ngan, M.-P., Wai, M.-K., Daiss, J.O., Tacke, R., and Rudd, J.A., Toxicol. Appl. Pharm., 2008, vol. 232, p. 369.

    Article  CAS  Google Scholar 

  33. Bliwise, D.L., Zhang, R.H., and Kutner, N.G., Sleep Med., 2014, vol. 15, p. 1241.

    Article  Google Scholar 

  34. Enggaard, T.P., Mikkelsen, S.S., Zwisler, S.T., Klitgaard, N.A., and Sindrup, S.H., Scand. J. Pain, 2010, vol. 1, p. 143.

    Article  Google Scholar 

  35. Kingbäck, M., Karlsson, L., Zackrisson, A.-L., Carlsson, B., Josefsson, M., Bengtsson, F., Ahlner, J., and Kugelberg, F.C., Forensic Sci. Int., 2012, vol. 214, p. 124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Ghorbani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhlaghi, H., Ghorbani, M., Lahoori, N.A. et al. Preconcentration and determination of naproxen in water samples by functionalized multi-walled carbon nanotubes hollow fiber solid phase microextraction—HPLC. J Anal Chem 71, 641–647 (2016). https://doi.org/10.1134/S1061934816070091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934816070091

Keywords

Navigation