Skip to main content
Log in

Thermophoresis of Cylindrical Particle Immersed in Brinkman Fluid

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

This paper reports an analytical study for the thermophoresis of a circular cylindrical aerosol particle embedded in a porous medium of constant porosity based on the Brinkman model. The Knudsen number is supposed to be in the slip-flow regime. The Peclet and Reynolds numbers are small, therefore the convective effects are neglected, and the problem can be considered quasi-steady. The porous medium is supposed to be homogeneous, isotropic and the solid phase is in thermal equilibrium with the fluid through the voids of the medium. In the analysis of motion, at the surface of the particle, we consider the following effects: temperature jump, thermal creep, viscous slip, and thermal stress slip. Formulas for thermophoretic velocity and force are derived. The novelty of the problem is the permeability parameter which characterizing the Brinkman flow. The effect of this parameter is shown through several plots for thermophoretic velocity and force against the thermal properties of the particle and porous medium. The limiting cases of Stokes and Darcy’s flows and the case of no thermal slip are discussed. results are also compared with the corresponding values for the case of spherical particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Chang, Y.C. and Keh, H.J., J. Aerosol Sci., 2012, vol. 50, pp. 1–10.

    Article  CAS  Google Scholar 

  2. Kennard, E.H., Kinetic Theory of Gases, with an Introduction to Statistical Mechanics, London: McGraw-Hill, 1938.

    Google Scholar 

  3. Loyalka, S.K., J. Aerosol Sci., 1992, vol. 23, no. 3, pp. 291–300.

    Article  CAS  Google Scholar 

  4. Keh, H.J. and Tu, H.J., Colloids Surf., A, 2001, vol. 176, nos. 2–3, pp. 213–223.

  5. Sasse, A.G.B.M., Nazaroff, W.W., and Gadgil, A.J., Aerosol, Sci. Technol., 1994, vol. 20, no. 3, pp. 227–238.

    Article  CAS  Google Scholar 

  6. Friedlander, S.K., Dust, Smoke and Haze, New York: Wiley, 1977.

    Google Scholar 

  7. Williams, M.M.R. and Loyalka, S.K., Aerosol Science: Theory and Practice, Oxford: Pergamon, 1991.

    Google Scholar 

  8. Messerer, A., Niessner, R., and Poschl, U., Aerosol, Sci. Technol., 2004, vol. 38, no. 4, pp. 456–466.

    Article  CAS  Google Scholar 

  9. Bhusnoor, S.S., Bhandarkar, U.V., Sethi, V., and Parikh, P.P., J. Aerosol Sci., 2017, vol. 105, pp. 84–93.

    Article  CAS  Google Scholar 

  10. Qin, W., Peng, T., Gao, Y., Wang, F., Hu, X., Wang, K., Shi, J., Li, D., Ren, J., and Fan, C., Angew. Chem. Int. Ed., 2017, vol. 56, no. 2, pp. 515–518.

    Article  CAS  Google Scholar 

  11. Leong, K.H., J. Aerosol Sci., 1984, vol. 15, no. 4, pp. 511–517.

    Article  Google Scholar 

  12. Williams, M.M.R., J. Phys. D: Appl. Phys., 1986, vol. 19, no. 9, pp. 1631–1642.

    Article  Google Scholar 

  13. Keh, H.J. and Ou, C.L., Aerosol, Sci. Technol., 2004, vol. 38, no. 7, pp. 675–684.

    Article  CAS  Google Scholar 

  14. Keh, H.J. and Chang, Y.C., Phys. Fluids, 2009, vol. 21, no. 6, p. 062001.

    Article  Google Scholar 

  15. Wang, L.J. and Keh, H.J., J. Aerosol Sci., 2010, vol. 41, no. 8, pp. 771–789.

    Article  CAS  Google Scholar 

  16. Chen, H.H. and Keh, H.J., Aerosol, Sci. Technol., 2014, vol. 48, no. 11, p. 1156–1165.

    Article  CAS  Google Scholar 

  17. Chang, Y.C. and Keh, H.J., Am. J. Heat Mass Transfer, 2017, vol. 4, no. 2, pp. 85–103.

    CAS  Google Scholar 

  18. Brinkman, H.C., J. Appl. Sci. Res., 1947, vol. 1, pp. 27–34.

    Article  Google Scholar 

  19. Saad, E.I. and Faltas, M.S., J. Mol. Liq., 2019, vol. 282, pp. 527–544.

    Article  CAS  Google Scholar 

  20. Li, C.Y. and Keh, H.J., J. Aerosol Sci., 2019, vol. 135, pp. 33–45.

    Article  CAS  Google Scholar 

  21. Faltas, M.S. and Ragab, K.E., Eur. Phys. J. Plus, 2019, vol. 134, no. 9, p. 475.

    Article  Google Scholar 

  22. Nield, D.A. and Bejan, A., Convection in Porous Media, 3rd ed., New York: Springer, 2006.

    Google Scholar 

  23. Brock, J.R., J. Colloid Sci., 1962, vol. 17, no. 8, pp. 768–780.

    Article  CAS  Google Scholar 

  24. Sharipov, F. and Kalempa, D., Int. J. Heat Mass Transfer, 2005, vol. 48, no. 6, pp. 1076–1083.

    Article  CAS  Google Scholar 

  25. Davis, M.H., J. Atmos. Sci., 1972, vol. 29, no. 5, pp. 911–915.

    Article  Google Scholar 

  26. Talbot, L., Cheng, R.K., Schefer, R.W., and Willis, D.R., J. Fluid Mech., 1980, vol. 101, no. 4, pp. 737–758.

    Article  Google Scholar 

  27. Sharipov, F., Eur. J. Mech. B Fluids, 2003, vol. 22, no. 2, pp. 133–143.

    Article  Google Scholar 

  28. Keh, H.J. and Lee, T.C., Theor. Comput. Fluid Dyn., 2010, vol. 24, no. 5, pp. 497–510.

    Article  Google Scholar 

  29. Kanki, T., Heat Transfer—Jpn. Res., 1998, vol. 27, no. 1, pp. 57–73.

    Google Scholar 

  30. Sone, Y., Phys. Fluids, 1972, vol. 15, no. 8, pp. 1418–1423.

    Article  Google Scholar 

  31. Bakanov, S.P., J. Appl. Math. Mech., 2004, vol. 68, no. 1, pp. 25–28.

    Article  Google Scholar 

  32. Mackowski, D.W., Int. J. Heat Mass Transfer, 1989, vol. 32, no. 5, pp. 843–854.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kareem E. Ragab.

Ethics declarations

The authors declare that they have no conflict of intere-st.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faltas, M.S., Kareem E. Ragab Thermophoresis of Cylindrical Particle Immersed in Brinkman Fluid. Colloid J 83, 676–687 (2021). https://doi.org/10.1134/S1061933X2106003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2106003X

Navigation