Skip to main content
Log in

Effective Parameters of Charged Spherical Particles in 1 : 1 Electrolyte Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In scope of the Poisson–Boltzmann theory, the electrostatic potential profiles in the vicinity of spherical particles immersed in 1 : 1 electrolyte solutions have been precisely calculated. Using the data on the behavior of the profiles at large distances from the particle surface, effective surface potential \({{\psi }_{{{\text{eff}}}}},\) and its limiting value \(\psi _{{{\text{eff}}}}^{{{\text{sat}}}},\) to which it tends upon an infinite growth of the surface charge, have been determined for a wide range of model parameters (surface charge density, particle radius, and electrolyte concentration). A universal curve has been plotted to represent the dependence of \(\psi _{{{\text{eff}}}}^{{{\text{sat}}}}\) on reduced particle radius κa (a is the radius and κ is the reciprocal Debye screening radius) and to evidently illustrate the existence of two known limiting laws of variations in the effective potential that corresponds to the saturation conditions. The energy criterion and the analysis of its sensitivity to the cutoff threshold have been employed to evaluate the thicknesses of the shells formed by immobilized counterions around the spherical particles. Dependences of the shell thickness on the surface charge density, particle radius, and 1 : 1 electrolyte concentration have been analyzed. It has been revealed that there is limiting thickness \(l_{{{\text{eff}}}}^{{{\text{sat}}}},\) which is reached upon the infinite growth of the surface charge density. A universal κ\(l_{{{\text{eff}}}}^{{{\text{sat}}}}\)a) curve is presented and compared with the \(\psi _{{{\text{eff}}}}^{{{\text{sat}}}}\)a) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Dolinnyi, A.I., Colloid J., 2019, vol. 81, p. 642.

    Article  CAS  Google Scholar 

  2. Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, New York: Elsevier, 1948.

    Google Scholar 

  3. Delahay, P., Double Layer and Electrode Kinetics, New York, 1965; M.: Mir, 1967.

    Google Scholar 

  4. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Consultants Bureau, 1987.

    Book  Google Scholar 

  5. Andelman, D., Handbook of Biological Physics, Lipowsky, R. and Sackmann, E., Eds., Elsevier Science, 1995, vol. 1.

    Google Scholar 

  6. Levin, Y., Rep. Prog. Phys., 2002, vol. 65, p. 1577.

    Article  CAS  Google Scholar 

  7. Lyklema, J., Fundamentals of Interface and Colloid Science, Amsterdam: Elsevier Academic, 2005, vol. 4, Chap. 3.

    Google Scholar 

  8. Ohshima, H., Nanolayer Research: Methodology and Technology for Green Chemistry, Elsevier, 2017, Chap. 2.

    Google Scholar 

  9. Attard, P., J. Phys. Chem., 1995, vol. 99, p. 14 174.

    Article  Google Scholar 

  10. Bocquet, L., Trizac, E., and Aubouy, M., J. Chem. Phys., 2002, vol. 117, p. 8138.

    Article  CAS  Google Scholar 

  11. Aubouy, M., Trizac, E., and Bocquet, L., J. Phys. A, 2003, vol. 36, p. 5835.

    Article  CAS  Google Scholar 

  12. Manning, G.S., J. Phys. Chem. B, 2007, vol. 111, p. 8554.

    Article  CAS  PubMed  Google Scholar 

  13. Tellez, G. and Trizac, E., Phys. Rev. E: Stat.Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2003, vol. 68. Article 061401.

    Google Scholar 

  14. González-Mozuelos, P., Guerrero-García, G.I., and Olvera De la Cruz, M., J. Chem. Phys., 2013, vol. 139, Article 064 709.

    Article  CAS  Google Scholar 

  15. Guerrero-Garcıa, G.I., Gonzalez-Mozuelos, P., and Olvera De la Cruz, M., ACS Nano, 2013, vol. 7, p. 9714.

    Article  PubMed  CAS  Google Scholar 

  16. Fagotti, B.C., Degiorgio, V., and Piazza, R., Langmuir, 1991, vol. 7, p. 824.

    Article  Google Scholar 

  17. Roberts, J.M., O’Dea, J.J., and Osteryoung, J.G., Anal. Chem., 1998, vol. 70, p. 3667.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, Q.R., Dubin, P.L., Moorefield, C.N., and Newkome, G.R., J. Phys. Chem. B, 2000, vol. 104, p. 898.

    Article  CAS  Google Scholar 

  19. Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., J. Colloid Interface Sci., 2001, vol. 233, p. 280.

    Article  CAS  PubMed  Google Scholar 

  20. Wette, P., Schöpe, H.J., and Palberg, T., J. Chem. Phys., 2002, vol. 116, p. 10 981.

    Article  CAS  Google Scholar 

  21. Aswal, V.K. and Goyal, P.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2003, vol. 67, Article 051 401.

  22. Garbow, N., Evers, M., Palberg, T., and Okubo, T., J. Phys. B: Condens. Matter, 2004, vol. 16, p. 3835.

    CAS  Google Scholar 

  23. Hsiao, C.C., Wang, T.-Y., and Tsao, H.-K., J. Chem. Phys., 2005, vol. 122, Article 144 702.

    Article  CAS  Google Scholar 

  24. Guo, X., Kirton, G.F., and Dubin, P.L., J. Phys. Chem. B, 2016, vol. 110, p. 20 815.

    Article  CAS  Google Scholar 

  25. Strubbe, F., Beunis, F., and Neyts, K., J. Colloid Interface Sci., 2006, vol. 301, p. 302.

    Article  CAS  PubMed  Google Scholar 

  26. Gillespie, D.A.J., Hallett, J.E., Elujoba, O., Ham-zah, A.F.C., Richardson, R.M., and Bartlett, P., Soft Matter, 2014, vol. 10, p. 566.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, X., Ran, Q., Haag, R., Ballauff, M., and Dzubiella, J., Macromolecules, 2017, vol. 50, p. 4759.

    Article  CAS  Google Scholar 

  28. Trefalt, G., Palberg, T., and Borkovec, M., Curr. Opin. Colloid Interface Sci., 2017, vol. 27, p. 9.

    Article  CAS  Google Scholar 

  29. Zimm, B.H. and Le Bret, M., J. Biomol. Struct. Dyn., 1983, vol. 1, p. 461.

    Article  CAS  PubMed  Google Scholar 

  30. Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., and Hone, D., J. Chem. Phys., 1984, vol. 80, p. 5776.

    Article  CAS  Google Scholar 

  31. Ramanathan, G.V., J. Chem. Phys., 1988, vol. 88, p. 3887.

    Article  CAS  Google Scholar 

  32. Belloni, L., Colloids Surf. A, 1998, vol. 140, p. 227.

    Article  CAS  Google Scholar 

  33. Schmitz, K.S., Langmuir, 2000, vol. 16, p. 2115.

    Article  CAS  Google Scholar 

  34. Sanghiran, V. and Schmitz, K.S., Langmuir, 2000, vol. 16, p. 7566.

    Article  CAS  Google Scholar 

  35. Lukatsky, D.B. and Safran, S.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 63, Article 011 405.

  36. Mukherjee, A.K., Schmitz, K.S., and Bhuiyan, L.B., Langmuir, 2002, vol. 18, p. 4210.

    Article  CAS  Google Scholar 

  37. Dufrêche, J.-F., White, T.O., and Hansen, J.-P., Mol. Phys., 2003, vol. 101, p. 1741.

    Article  CAS  Google Scholar 

  38. Trizac, E., Bocquet, L., Aubouy, M., and von Grünberg, H.H., Langmuir, 2003, vol. 19, p. 4027.

    Article  CAS  Google Scholar 

  39. Diehl, A. and Levin, Y., J. Chem. Phys., 2004, vol. 121, p. 12 100.

    Article  CAS  Google Scholar 

  40. Denton, A.R., J. Phys.: Condens. Matter, 2008, vol. 20, Article 494 230.

    Google Scholar 

  41. Lamm, G. and Pack, G.R., Biopolymers, 2010, vol. 93, p. 619.

    Article  CAS  PubMed  Google Scholar 

  42. Carnal, F. and Stoll, S., J. Phys. Chem. A, 2012, vol. 116, p. 6600.

    Article  CAS  PubMed  Google Scholar 

  43. Šamaj, L. and Trizac, E., J. Phys. A, 2015, vol. 48, Article 265 003.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the framework of a state order to the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dolinnyi.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinnyi, A.I. Effective Parameters of Charged Spherical Particles in 1 : 1 Electrolyte Solutions. Colloid J 82, 661–671 (2020). https://doi.org/10.1134/S1061933X20060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060034

Navigation