Skip to main content
Log in

The Effect of Simulation Cell Size on the Diffusion Coefficient of an Ionic Surfactant Aggregate

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Results of all-atom molecular dynamics simulation have been presented for salt-free aqueous solutions of sodium dodecyl sulfate at its fixed total concentration in a simulation cell containing one to four preliminarily formed quasi-stable ionic aggregates with equal aggregation numbers n = 32. The obtained molecular dynamics trajectories have been used to study the structural and transport properties of the micellar solution. The value of the counterion diffusion coefficient obtained using the Green–Kubo relation has turned out to be somewhat higher than the corresponding value calculated by the Einstein equation. The diffusion coefficients of the aggregates in the systems containing from two to four aggregates have appeared to be higher than the diffusion coefficient of a single aggregate in a cell. The mean force potential obtained for the interaction between the aggregates having aggregation number n = 32 as a function the distance between the aggregate centers of mass has a local minimum in the system containing four such aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Lan’, 2016.

    Google Scholar 

  2. Shchekin, A.K., Adzhemyan, L.Ts., Babintsev, I.A., and Volkov, N.A., Colloid J. 2018, vol. 80, p. 107.

    Article  CAS  Google Scholar 

  3. Babintsev, I.A., Adzhemyan, L.Ts., and Shchekin, A.K., J. Chem. Phys., 2012, vol. 137, 044902.

    Article  CAS  PubMed  Google Scholar 

  4. Shchekin, A.K., Babintsev, I.A., Adzhemyan, L.Ts., and Volkov, N.A., RSC Adv., 2014, vol. 4, p. 51722.

    Article  CAS  Google Scholar 

  5. Zakharov, A.I., Adzhemyan, L.Ts., and Shchekin, A.K., J. Chem. Phys., 2015, vol. 143, 124902.

    Article  CAS  PubMed  Google Scholar 

  6. Shchekin, A.K., Babintsev, I.A., and Adzhemyan, L.Ts., J. Chem. Phys., 2016, vol. 145, 174105.

    Article  CAS  PubMed  Google Scholar 

  7. Mohan, G. and Kopelevich, D.I., J. Chem. Phys., 2008, vol. 128, 044905.

    Article  CAS  PubMed  Google Scholar 

  8. Shelley, J.C. and Shelley, M.Y., Curr. Opin. Colloid Interface Sci. 2000, vol. 5, p. 101.

    Article  CAS  Google Scholar 

  9. Brodskaya, E.N., Colloid J. 2012, vol. 74, p. 154.

    Article  CAS  Google Scholar 

  10. Ladanyi, B.M., Curr. Opin. Colloid Interface Sci. 2013, vol. 18, p. 15.

    Article  CAS  Google Scholar 

  11. Rusanov, A.I., Shchekin, A.K., and Volkov, N.V., Russ. Chem. Rev.. 2017, vol. 86, p. 567.

    Article  CAS  Google Scholar 

  12. Volkov, N.A., Divinskiy, B.B., Vorontsov-Velyaminov, P.N., and Shchekin, A.K., Colloids Surf. A, 2015, vol. 480, p. 165.

    Article  CAS  Google Scholar 

  13. Volkov, N.A., Tuzov, N.V., and Shchekin, A.K., Fluid Phase Equilib. 2016, vol. 424, p. 114.

    Article  CAS  Google Scholar 

  14. Volkov, N.A., Tuzov, N.V., and Shchekin, A.K., Colloid J. 2017, vol. 79, p. 181.

    Article  CAS  Google Scholar 

  15. Volkov, N.A., Shchekin, A.K., Tuzov, N.V., Lebedeva, T.S., and Kazantseva, M.A., J. Mol. Liq., 2017, vol. 236, p. 414.

    Article  CAS  Google Scholar 

  16. Lebecque, S., Crowet, J.M., Nasir, M.N., Deleu, M., and Lins, L., J. Mol. Graph. Model., 2017, vol. 72, p. 6.

    Article  CAS  PubMed  Google Scholar 

  17. Lyubartsev, A.P. and Laaksonen, A., Comput. Phys. Commun. 2000, vol. 128, p. 565.

    Article  CAS  Google Scholar 

  18. Klaud, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., Mackerell, A.D., and Pastor, R.W., J. Phys. Chem. B, 2010, vol. 114, p. 7830.

    Article  CAS  Google Scholar 

  19. Lennard-Jones, J.E., Proc. R. Soc. London A 1924, vol. 106, p. 463.

    Article  Google Scholar 

  20. Beglov, D. and Roux, B., J. Chem. Phys., 1994, vol. 100, p. 9050.

    Article  CAS  Google Scholar 

  21. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M., J. Comput. Chem., 1983, vol. 4, p. 187.

    Article  CAS  Google Scholar 

  22. Durell, S.R., Brooks, B.R., and Ben-Naim, A., J. Phys. Chem., 1994, vol. 98, p. 2198.

    Article  CAS  Google Scholar 

  23. Neria, E., Fischer, S., and Karplus, M., J. Chem. Phys., 1996, vol. 105, p. 1902.

    Article  CAS  Google Scholar 

  24. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., J. Chem. Phys., 1983, vol. 79, p. 926.

    Article  CAS  Google Scholar 

  25. Tuckerman, M., Berne, B.J., and Martyna, G.J., J. Chem. Phys., 1992, vol. 97, p. 1990.

    Article  CAS  Google Scholar 

  26. Ewald, P., Ann. Phys. (New York) 1921, vol. 369, p. 253.

    Google Scholar 

  27. Lyubartsev, A., MDynaMix Package version 5.2.7 User manual, Division of Physical Chemistry, Stockholm University, 12 January 2015.

    Google Scholar 

  28. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph., 1996, vol. 14, p. 33.

    Article  CAS  Google Scholar 

  29. Bogusz, S., Venable, R.M., and Pastor, R.W., J. Phys. Chem. B, 2000, vol. 104, p. 5462.

    Article  CAS  Google Scholar 

  30. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1987.

    Google Scholar 

  31. Kondratyuk, N.D., Norman, G.E., and Stegailov, V.V., J. Chem. Phys., 2016, vol. 145, 204504.

    Article  CAS  PubMed  Google Scholar 

  32. Lyubartsev, A.P. and Laaksonen, A., J. Phys. Chem., 1996, vol. 100, 16410.

    Article  CAS  Google Scholar 

  33. Tomobe, K., Yamamoto, E., Kojic, D., Yasui, M., and Yasuoka, K., Mol. Simul. 2015, vol. 41, p. 840.

    Article  CAS  Google Scholar 

  34. Yuan, F., Wang, S., and Larson, R.G., Langmuir 2015, vol. 31, p. 1336.

    Article  CAS  PubMed  Google Scholar 

  35. Kawada, S., Fujimoto, K., Yoshii, N., and Okazaki, S., J. Chem. Phys., 2017, vol. 147, 084903.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Volkov.

Additional information

Original Russian Text © N.A. Volkov, M.V. Posysoev, A.K. Shchekin, 2018, published in Kolloidnyi Zhurnal, 2018, Vol. 80, No. 3, pp. 264–271.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, N.A., Posysoev, M.V. & Shchekin, A.K. The Effect of Simulation Cell Size on the Diffusion Coefficient of an Ionic Surfactant Aggregate. Colloid J 80, 248–254 (2018). https://doi.org/10.1134/S1061933X1803016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X1803016X

Navigation