Skip to main content
Log in

On variations in size distributions of particles and aggregates upon dilution of magnetic fluids

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Variations in size distributions of particles and aggregates upon dilution of kerosene-based magnetic fluids have been studied by dynamic light scattering. The data obtained on samples of magnetic fluids produced by three different manufacturers have shown that the dilution of an initial concentrated magnetic fluid leads to the formation of a system of unstable aggregates with sizes ranging from 70−100 nm to 1 μm. The aggregates peptize for 2−4 days to result in the establishment of stationary particle and aggregate size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Odenbach, S., Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids, Berlin: Springer, 2009.

    Book  Google Scholar 

  2. Reed, W. and Fendler, J.H., J. Appl. Phys., 1986, vol. 59, p. 2914.

    Article  CAS  Google Scholar 

  3. Buzmakov, V.M. and Pshenichnikov, A.F., J. Colloid Interface Sci., 1996, vol. 182, p. 63.

    Article  Google Scholar 

  4. Chekanov, V.V., Fizicheskie svoistva magnitnykh zhidkostei (Physical Properties of Magnetic Fluids), Shliomis, M.I., Ed., Sverdlovsk: UNTs Akad. Nauk SSSR, 1983, p. 42.

  5. Chikazumi, S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogawa, M., and Kurihara, Y., J. Magn. Magn. Mater., 1987, vol. 65, p. 245.

    Article  CAS  Google Scholar 

  6. Dikanskii, Yu.I., Doctoral Dissertation (Phys.-Math.), Stavropol: Stavropol State Univ., 1999.

    Google Scholar 

  7. Lakhtina, E.V. and Pshenichnikov, A.F., Colloid J., 2010, vol. 72, p. 236.

    Article  CAS  Google Scholar 

  8. Lebedev, A.V., Aref’ev, I.M., and Aref’eva, T.A., Abstracts of Papers, XIX zimnyaya shkola po mekhanike sploshnykh sred (XIX Winter School on Mechanics of Continuous Media), Yekaterinburg, 2015, p. 183.

    Google Scholar 

  9. Pshenichnikov, A.F., Lebedev, A.V., Radionov, A.V., and Efremov, D.V., Colloid J., 2015, vol. 77, p. 196.

    Article  CAS  Google Scholar 

  10. Nagornyi, A.V., Petrenko, V.I., Avdeev, M.V., Bulavin, L.A., Roshta, L., and Aksenov, V.L., Poverkhnost. Rentgen., Sinkhrotron. Neitron. Issled., 2013, no. 2, p. 3.

    Google Scholar 

  11. Woodward, R.C., Heeris, J., Pierre, T.G.St., Saunders, M., Gilbert, E.P., Rutnakornpituk, M., Zhang, Q., and Riffle, J.S., J. Appl. Crystallogr., 2007, vol. 40, p. s495.

    Article  CAS  Google Scholar 

  12. Aref’ev, I.M. and Lebedev, A.V., Colloid J., 2016, vol. 78, p. 269.

    Article  Google Scholar 

  13. Erin, K.V., Opt. Spektrosk., 2016, vol. 120, p. 333.

    Article  Google Scholar 

  14. Mehta, R.V., Upadhyay, R.V., Patel, R., and Trivedi, P., J. Magn. Magn. Mater., 2005, vol. 289, p. 36.

    Article  CAS  Google Scholar 

  15. Berne, P.J. and Pecora, R., Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, New York: Dover, 2000.

    Google Scholar 

  16. Kulikov, K.G. and Koshlan, T.V., Zh. Tekh. Fiz., 2015, vol. 85, no. 12, p. 26.

    Google Scholar 

  17. Khlebtsov, N.G., Colloid J., 2003, vol. 65, p. 652.

    Article  CAS  Google Scholar 

  18. Shulenina, A.V., Avdeev, M.V., Besedin, S.P., Volkov, V.V., Khoidu, A., Tombats, E., and Aksenov, V.L., Kristallografiya, 2012, vol. 57, p. 948.

    Google Scholar 

  19. Voitylov, V.V., Petrov, M.P., Spartakov, A.A., and Trusov, A.A., Opt. Spektrosk., 2013, vol. 114, p. 687.

    Google Scholar 

  20. Khlebtsov, N.G., Oslablenie i rasseyanie sveta v dispersnykh sistemakh (Light Attenuation and Scattering in Disperse Systems), Saratov: Saratov Gos. Univ., 2001.

    Google Scholar 

  21. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods of Ill-Correct Problems Solution), Moscow: Nauka, 1974.

    Google Scholar 

  22. Wilson, S.R., Ridler, P.J., and Jennings, B.R., J. Phys. D: Appl. Phys., 1996, vol. 29, p. 885.

    Article  CAS  Google Scholar 

  23. Babadzhanyants, L.K., Voitylov, A.V., Voitylov, V.V., and Trusov, A.A., Vysokomol. Soedin., Ser. A, 2010, vol. 52, p. 1329.

    CAS  Google Scholar 

  24. Yerin, C.V., J. Nano-Electron. Phys., 2014, vol. 6, p. 03033.

    Google Scholar 

  25. Yoon, S., J. Magnet., 2011, vol. 6, p. 368.

    Article  Google Scholar 

  26. Yerin, C.V. and Padalka, V.V., J. Magn. Magn. Mater., 2005, vol. 289, p. 105.

    Article  CAS  Google Scholar 

  27. Yerin, C.V., J. Nano-Electron. Phys., 2015, vol. 7, p. 04042.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Erin.

Additional information

Original Russian Text © K.V. Erin, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 1, pp. 32–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erin, K.V. On variations in size distributions of particles and aggregates upon dilution of magnetic fluids. Colloid J 79, 50–55 (2017). https://doi.org/10.1134/S1061933X17010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X17010033

Navigation