Skip to main content
Log in

Equations for the evolution of a growing or evaporating free microdroplet under nonstationary conditions of diffusion and heat transfer in a multicomponent vapor–gas medium

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A set of equations has been derived for the nonstationary composition, size, and temperature of a growing or evaporating multicomponent microdroplet of a nonideal solution under arbitrary initial conditions. Equations for local nonstationary diffusion molecular and heat fluxes in a mixture of a multicomponent vapor with a noncondensable carrier gas have been obtained within the framework of nonequilibrium thermodynamics with allowance for hydrodynamic flow of the medium. The derived closed set of equations takes into account the nonstationarity of the diffusion and heat transfer, effect of thermodiffusion and other cross effects in the multicomponent vapor–gas medium, the Stefan flow, and droplet boundary motion, as well as the nonideality of the solution in the droplet. The general approach has been illustrated by the consideration of the multicomponent medium at low concentrations of vapors taking into account its thermal expansion due to the Stefan flow in the case of a nonstationary diffusion regime of the nonisothermal condensation growth of a one-component droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Oxford: Pergamon, 1987.

    Google Scholar 

  2. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.

    Google Scholar 

  3. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 2002.

    Google Scholar 

  4. Cussler, E.L., Diffusion Mass Transfer in Fluid Systems, Cambridge: Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  5. Sadhal, S.S., Ayyaswamy, P.S., and Chung, J.N., Transport Phenomena with Drops and Bubbles, New York: Springer, 1997.

    Google Scholar 

  6. Poling, B.E., Prausnitz, J.M., and O’Connell, J.P., The Properties of Gases and Liquids, New York: McGrawHill, 2001.

    Google Scholar 

  7. Smith, J.M., Van Ness, H.C., and Abbott, M.M., Introduction to Chemical Engineering Thermodynamics, New Delhi: McGraw-Hill, 2005.

    Google Scholar 

  8. Sirignano, W.A., Fluid Dynamics and Transport of Droplet and Sprays, Cambridge: Cambridge Univ. Press, 2000.

    Google Scholar 

  9. Torres, D.J., O’Rourke, P.J., and Amsden, A.A., Atomization Sprays, 2003, vol. 13, pp. 131.

    Article  Google Scholar 

  10. Torres, D.J., O’Rourke, P.J., and Amsden, A.A., Combust. Theor. Model., 2003, vol. 7, pp. 66.

    Article  Google Scholar 

  11. Sazhin, S.S., Prog. Energy Combust. Sci., 2006, vol. 32, pp. 162.

    Article  CAS  Google Scholar 

  12. Newbold, F.R. and Amundson, N.R., AIChE J., 1973, vol. 19, pp. 22.

    Article  CAS  Google Scholar 

  13. Kulmala, M., Vesala, T., and Wagner, P.E., Proc. R. Soc. London A, 1993, vol. 441, pp. 589.

    Article  CAS  Google Scholar 

  14. Vesala, T. and Kulmala, M., Phys. A (Amsterdam), 1993, vol. 192, pp. 107.

    Article  CAS  Google Scholar 

  15. Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A., and Wagner, P.E., J. Aerosol Sci., 1997, vol. 28, pp. 565.

    Article  CAS  Google Scholar 

  16. Mattila, T., Kulmala, M., and Vesala, T., J. Aerosol Sci., 1997, vol. 28, pp. 553.

    Article  CAS  Google Scholar 

  17. Lehtinen, K.E.J., Kulmala, M., Vesala, T., and Jokiniemi, J.K., J. Aerosol Sci., 1998, vol. 29, pp. 1035.

    Article  CAS  Google Scholar 

  18. Kuni, F.M., Lezova, A.A., and Shchekin, A.K., Physica A (Amsterdam), 2009, vol. 388, pp. 3728.

    Article  Google Scholar 

  19. Kuchma, A.E., Shchekin, A.K., and Kuni, F.M., Physica A (Amsterdam), 2011, vol. 390, pp. 3308.

    Article  CAS  Google Scholar 

  20. Kuchma, A.E. and Shchekin, A.K., in Nucleation Theory and Applications, Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Eds., Dubna: JINR, 2011, pp. 203.

  21. Kuchma, A.E. and Shchekin, A.K., Colloid J., 2012, vol. 74, pp. 215.

    Article  CAS  Google Scholar 

  22. Martyukova, D.S., Kuchma, A.E., and Shchekin, A.K., Colloid J., 2013, vol. 75, pp. 571.

    Article  CAS  Google Scholar 

  23. Shchekin, A.K., Kuni, F.M., and Lezova, A.A., Colloid J., 2011, vol. 73, pp. 394.

    Article  CAS  Google Scholar 

  24. Kuchma, A.E., Martyukova, D.S., Lezova, A.A., and Shchekin, A.K., Colloids Surf. A, 2013, vol. 432, pp. 147.

    Article  CAS  Google Scholar 

  25. Kuchma, A.E., Shchekin, A.K., Lezova, A.A., and Martyukova, D.S., Colloid J., 2014, vol. 76, pp. 576.

    Article  CAS  Google Scholar 

  26. Barrett, J.C. and Clement, C.F., J. Aerosol Sci., 1988, vol. 19, pp. 223.

    Article  CAS  Google Scholar 

  27. Kuchma, A.E., Shchekin, A.K., and Markov, M.N., Colloid J., 2014, vol. 76, pp. 701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Additional information

Original Russian Text © A.E. Kuchma, A.K. Shchekin, D.S. Martyukova, A.A. Lezova, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 3, pp. 325–337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchma, A.E., Shchekin, A.K., Martyukova, D.S. et al. Equations for the evolution of a growing or evaporating free microdroplet under nonstationary conditions of diffusion and heat transfer in a multicomponent vapor–gas medium. Colloid J 78, 340–352 (2016). https://doi.org/10.1134/S1061933X16030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16030078

Navigation