Skip to main content
Log in

Hydration of Cl ion in a planar nanopore with hydrophilic walls. 2. Thermodynamic stability

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The Monte Carlo bicanonical statistical ensemble method has been employed to calculate the dependences of the Gibbs free energy, formation work, and entropy on the size of a hydration shell grown from water vapor on single-charged chlorine anion in a model planar nanopore with hydrophilic structureless walls at 298 K. A refined model comprising many-particle polarization interactions and calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment of water molecules to the ion has been used. It has been found that a weak hydrophilicity of pore walls leads to destabilization of the hydration shell, while a strong one, on the contrary, causes its stabilization. The physical reason for the instability in the field of hydrophilic walls qualitatively differs from that under the conditions of hydration in bulk water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 135.

    Article  CAS  Google Scholar 

  2. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 93.

    Article  CAS  Google Scholar 

  3. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 107.

    Article  CAS  Google Scholar 

  4. Shevkunov, S.V., High Energy Chem., 2009, vol. 43, p. 341.

    Article  CAS  Google Scholar 

  5. Shevkunov, S.V., Russ. J. Phys. Chem., 2008, vol. 82, p. 1878.

    Article  CAS  Google Scholar 

  6. Carlon, H.R., J. Appl. Phys., 1981, vol. 52, p. 3111.

    Article  CAS  Google Scholar 

  7. Carlon, H.R., Appl. Opt., 1981, vol. 20, p. 1316.

    Article  CAS  Google Scholar 

  8. Boyarchuk, K.A., Kononov, E.N., and Lyakhov, G.A., Pis’ma Zh. Tekh. Fiz., 1993, vol.19 no. 6, p. 67.

    Google Scholar 

  9. Elokhin, A.P. and Kononov, E.N., At. Energ., 1996, vol. 80, p. 129.

    Article  CAS  Google Scholar 

  10. Didenko, A.N., Usov, Yu.P., Yushkov, Yu.G., Grigor’ev, V.P., Potashev, A.G., Luk’yanov, O.V., Badulin, N.N., Batsula, A.P., Shoshin, E.L., Mel’nikov, A.I., Boiko, V.I., Shamanin, I.V., and Andreev, O.V., At. Energ., 1996, vol. 80, p. 47.

    Article  CAS  Google Scholar 

  11. Shevkunov, S.V. and Bauman, E.G., Mat. Model., 2000, vol.12 no. 9, p. 45.

    Google Scholar 

  12. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2001, vol. 119, p. 485.

    Google Scholar 

  13. Shevkunov, S.V., Russ. J. Phys. Chem., 2011, vol. 85, p. 1584.

    Article  CAS  Google Scholar 

  14. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 275.

    Article  CAS  Google Scholar 

  15. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, Cl., Chem. Phys., 2005, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  16. Shevkunov, S.V., Dokl. Akad. Nauk, 1998, vol. 363, p. 215.

    CAS  Google Scholar 

  17. Shevkunov, S.V., High Energy Chem., 1999, vol. 33, p. 277.

    CAS  Google Scholar 

  18. Shevkunov, S.V. and Vegiri, A., J. Chem. Phys., 1999, vol. 111, p. 9303.

    Article  CAS  Google Scholar 

  19. Shevkunov, S.V., Colloid J., 2000, vol. 62, p. 509.

    CAS  Google Scholar 

  20. Shevkunov, S.V., High Energy Chem., 2008, vol. 42, p. 205.

    Article  CAS  Google Scholar 

  21. Shevkunov, S.V., High Energy Chem., 2005, vol. 39, p. 351.

    Article  CAS  Google Scholar 

  22. Shevkunov, S.V., Russ. J. Electrochem., 2002, vol. 38, p. 300.

    Article  CAS  Google Scholar 

  23. Yang, K.L., Yiacoumi, S., and Tsouris, C., J. Electroanal. Chem., 2003, vol. 540, p. 159.

    Article  CAS  Google Scholar 

  24. Hou, C.H., Liang, C.D., Yiacoumi, S., Dai, S., and Tsouris, C., J. Colloid Interface Sci., 2006, vol. 302, p. 54.

    Article  CAS  Google Scholar 

  25. Simon, P. and Gogotsi, Y., Nat. Mater., 2008, vol. 7, p. 845.

    Article  CAS  Google Scholar 

  26. Steele, B.C.H. and Heinzel, A., Nature (London), 2001, vol. 414, p. 345.

    Article  CAS  Google Scholar 

  27. Jurewicz, K., Frackowiak, E., and Beguin, F., Appl. Phys. A, 2004, vol. 78, p. 981.

    Article  CAS  Google Scholar 

  28. Chou, T. and Lohse, D., Phys. Rev. Lett., 1999, vol. 82, p. 3552.

    Article  CAS  Google Scholar 

  29. Dubbeldam, D., Calero, S., Maesen, T.L.M., and Smit, B., Phys. Rev. Lett., 2003, vol. 90, p. 245901.

    Article  CAS  Google Scholar 

  30. Nonner, W., Gillespie, D., Henderson, D., and Eisenberg, B., J. Phys. Chem. B, 2001, vol. 105, p. 6427.

    Article  CAS  Google Scholar 

  31. Beckstein, O. and Sansom, M.S., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, p. 7063.

    Article  CAS  Google Scholar 

  32. Allen, T.W., Andersen, O.S., and Roux, B., Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, p. 117.

    Article  CAS  Google Scholar 

  33. Noskov, S.Y., Berneche, S., and Roux, B., Nature (London), 2004, vol. 431, p. 830.

    Article  CAS  Google Scholar 

  34. Peter, C. and Hummer, G., Biophys. J., 2005, vol. 89, p. 2222.

    Article  CAS  Google Scholar 

  35. Morais-Cabral, J.H., Zhou, Y.F., and Mackinnon, R., Nature (London), 2001, vol. 414, p. 37.

    Article  CAS  Google Scholar 

  36. Berneche, S. and Roux, B., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, p. 8644.

    Article  CAS  Google Scholar 

  37. Elber, R., Chen, D.P., Rojewska, D., and Eisenberg, R., Biophys. J., 1995, vol. 68, p. 906.

    Article  CAS  Google Scholar 

  38. Lynden-Bell, R.M. and Rasaiah, J.C., J. Chem. Phys., 1996, vol. 105, p. 9266.

    Article  CAS  Google Scholar 

  39. Lakatos, G. and Patey, G.N., J. Chem. Phys., 2007, vol. 126, p. 024703.

    Article  CAS  Google Scholar 

  40. Haan, M., Gwan, J.F., and Baumgaertner, A., Mol. Simul., 2009, vol. 35, p. 13.

    Article  CAS  Google Scholar 

  41. Kiyohara, K., Sugino, T., and Asaka, K., J. Chem. Phys., 2010, vol. 132, p. 144705.

    Article  Google Scholar 

  42. Beua, T.A., J. Chem. Phys., 2010, vol. 132, p. 164513.

    Article  Google Scholar 

  43. Puibasset, J., J. Chem. Phys., 2007, vol. 126, p. 184701.

    Article  Google Scholar 

  44. Dubbeldam, D. and Snurr, R.Q., Mol. Simul., 2007, vol. 33, p. 305.

    Article  CAS  Google Scholar 

  45. Gallo, P. and Rovere, M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2007, vol. 76, p. 061202.

    Article  CAS  Google Scholar 

  46. Eslami, H., Mozaffari, F., Moghadasi, J., and Muller Plathe, F., J. Chem. Phys., 2008, vol. 129, p. 194702.

    Article  Google Scholar 

  47. Torii, D. and Ohara, T., J. Chem. Phys., 2007, vol. 126, p. 154706.

    Article  Google Scholar 

  48. Wu, Y.-C., Lin, J.-S., Ju, S.-P., Lee, W.-J., Lin, Y.-S., and Hwang, C.-C., Comput. Mater. Sci., 2007, vol. 39, p. 359.

    Article  CAS  Google Scholar 

  49. Weng, M.-H., Lee, W.-J., Ju, S.-P., Chao, C.-H., Hsieh, N.-K., Chang, J.-G., and Chen, H.-L., J. Chem. Phys., 2008, vol. 128, p. 174705.

    Article  Google Scholar 

  50. Hummer, G., Rasaiah, J.C., and Noworyta, J.P., Nature (London), 2001, vol. 414, p. 188.

    Article  CAS  Google Scholar 

  51. Koga, K., Gao, G.T., Tanaka, H., and Zeng, X.C., Nature (London), 2001, vol. 412, p. 802.

    Article  CAS  Google Scholar 

  52. Gordillo, M.C. and Marti, J., Chem. Phys. Lett., 2000, vol. 329, p. 341.

    Article  CAS  Google Scholar 

  53. Beckstein, O., Biggin, P.C., and Sansom, M.S.P., J. Phys. Chem. B, 2001, vol. 105, p. 12902.

    Article  CAS  Google Scholar 

  54. Allen, R., Melchionna, S., and Hansen, J.-P., Phys. Rev. Lett., 2002, vol. 89, p. 175502.

    Article  Google Scholar 

  55. Meng, L., Li, Q., and Shuai, Z., J. Chem. Phys., 2008, vol. 128, p. 134703.

    Article  Google Scholar 

  56. Liu, H., Jameson, C.J., and Murad, S., Mol. Simul., 2008, vol. 34, p. 169.

    Article  CAS  Google Scholar 

  57. Alexiadis, A. and Kassinos, S., Mol. Simul., 2008, vol. 34, p. 671.

    Article  CAS  Google Scholar 

  58. Cailliez, F., Boutin, A., Demachy, I., and Fuchs, A.H., Mol. Simul., 2009, vol. 35, p. 24.

    Article  CAS  Google Scholar 

  59. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 221.

    Article  CAS  Google Scholar 

  60. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 240.

    Article  CAS  Google Scholar 

  61. Xu, D., Li, D., Leng, Y., and Chen, Y., Mol. Simul., 2007, vol. 33, p. 959.

    Article  CAS  Google Scholar 

  62. Shirono, K., Tatsumi, N., and Daiguji, H., J. Phys. Chem. B, 2009, vol. 113, p. 1041.

    Article  CAS  Google Scholar 

  63. Videla, P.E., Sala, J., Marti, J., Guardia, E., and Laria, D., J. Chem. Phys., 2011, vol. 135, p. 104503.

    Article  Google Scholar 

  64. Fedyanin, I., Pertsin, A., and Grunze, M., J. Chem. Phys., 2011, vol. 135, p. 174704.

    Article  Google Scholar 

  65. Taboada-Serrano, P., Yiacoumi, S., and Tsouris, C., J. Chem. Phys., 2005, vol. 123, p. 054703.

    Article  Google Scholar 

  66. Hou, C.-H., Taboada-Serrano, P., Yiacoumi, S., and Tsouris, C., J. Chem. Phys., 2008, vol. 128, p. 044705.

    Article  Google Scholar 

  67. Desgrange, C. and Delhommelle, J., Mol. Simul., 2008, vol. 34, p. 177.

    Article  Google Scholar 

  68. Selvan, M.E., Keffer, D.J., Cui, S., and Paddison, S.J., Mol. Simul., 2010, vol. 36, p. 568.

    Article  Google Scholar 

  69. Kalcher, I., Schulz, J.C.F., and Dzubiella, J., J. Chem. Phys., 2010, vol. 133, p. 16451.

    Article  Google Scholar 

  70. Hill, T.L., Statistical Mechanics. Principles and Selected Applications, New York: McGraw-Hill, 1956.

    Google Scholar 

  71. Shevkunov, S.V., Kolloidn. Zh., 1983, vol. 45, p. 1019.

    Google Scholar 

  72. Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 509.

    Article  CAS  Google Scholar 

  73. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.

    Article  CAS  Google Scholar 

  74. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, p. 34.

    Article  CAS  Google Scholar 

  75. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 135, p. 510.

    Google Scholar 

  76. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1127.

    Article  CAS  Google Scholar 

  77. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 216.

    Article  CAS  Google Scholar 

  78. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 228.

    Article  CAS  Google Scholar 

  79. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 753.

    Article  CAS  Google Scholar 

  80. Shevkunov, S.V., Colloid J., 2009, vol. 71, p. 406.

    Article  CAS  Google Scholar 

  81. Shevkunov, S.V., Russ. J. Phys. Chem., 2009, vol. 83, p. 972.

    Article  CAS  Google Scholar 

  82. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 490.

    Article  CAS  Google Scholar 

  83. Shevkunov, S.V., Russ. J. Phys. Chem., 2014, vol. 88, p. 1744.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 1, pp. 124–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Hydration of Cl ion in a planar nanopore with hydrophilic walls. 2. Thermodynamic stability. Colloid J 78, 137–148 (2016). https://doi.org/10.1134/S1061933X15060198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15060198

Keywords

Navigation