Skip to main content
Log in

Spectrum of a Problem of Elasticity Theory in the Union of Several Infinite Layers

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The essential spectrum of the Dirichlet problem for the system of Lamé equations in a three-dimensional domain formed by three mutually perpendicular elastic layers occupies the ray [Λ,+∞). The lower bound Λ > 0 is the least eigenvalue (its existence is established) of the problem of elasticity theory in an infinite two-dimensional cross-shaped waveguide. It is proved that the discrete spectrum of the spatial problem is nonempty. Other configurations of layers and the scalar problem of the junction of quantum waveguides are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Problems (Izdatatel’stvo Nauka, Moscow, 1973; Springer-Verlag, New York, 1985).

    Google Scholar 

  2. G. Fichera, “Existence Theorems in Elasticity Theory,” in: Linear Theories of Elasticity and Thermoelasticity (Springer-Verlag, Berlin–Heidelberg, 1973; Existence Theorems in Elasticity Theory, Mir, Moscow, 1974).

    Google Scholar 

  3. M. Sh. Birman and M. Z. Solomyak [Solomjak], Spectral Theory of Self-adjoint Operators in Hilbert Spaces (Leningrad. Univ., Leningrad, 1980; D. Reidel Publishing Co., Dordrecht, 1987).

    MATH  Google Scholar 

  4. G. P. Cherepanov, Mechanics of Brittle Fracture (Nauka, Moscow, 1974; McGraw-Hill, New York, 1979).

    Google Scholar 

  5. Y. Avishai, D. Bessis, B.G. Giraud, and G. Mantica, “Quamtum Bound States in Open Geometries,” Phys. Rev. B 44 (15), 8028–8034 (1991).

    Article  ADS  Google Scholar 

  6. S. A. Nazarov, “The Eigenfrequencies of a Slightly Curved Isotropic Strip Clamped between Absolutely Rigid Profiles,” Prikl. Mat. Mekh. 78 (4), 527–541 (2014) [J. Appl. Math. Mech. 78, (4) 374–383 (2014)].

    MathSciNet  Google Scholar 

  7. S. A. Nazarov, “Discrete Spectrum of Cranked Quantum and Elastic Wavegiodes,” Zh. Vychisl. Mat. Mat. Fiz. 56 (5), 879–895 (2016) [Comput. Math. Math. Phys. 56, (5) 864–880 (2016)].

    Google Scholar 

  8. R.L. Shult, D.G. Ravenhall, and H.D. Wyld, “Quamtum Bound States in a Classically Unbounded System of Crossed Wires,” Phys. Rev. B 39 (8), 5476–5479 (1989).

    Article  ADS  Google Scholar 

  9. S. A. Nazarov, “The Spectrum of Rectangular Lattices of Quantum Waveguides,” Izv. Ross. Akad. Nauk Ser. Mat. 81 (1), 3–64 (2017) [Izv. Math. 81, (1) 29–90 (2017)].

    MathSciNet  Google Scholar 

  10. I. V. Kamotskii and S. A. Nazarov, “Elastic Waves Localized near Periodic Families of Defects,” Dokl. Ross. Akad. Nauk 368 (6), 771–773 (1999) [Dokl. Math. 44, (10) 715–717 (1999)].

    MathSciNet  MATH  Google Scholar 

  11. I. V. Kamotskii and S. A. Nazarov, “Exponentially Decreasing Solutions of Diffraction Problems on a Rigid Periodic Boundary,” Mat. Zametki 73 (1), 138–140 (2003) [Math. Notes 73, (1) 129–131 (2003)].

    Article  MathSciNet  MATH  Google Scholar 

  12. R. D. Mindlin, Waves and Vibration in Isotropic Elastic Plate (Structural Mechanics, Proceedings of the 1St Symposium of Naval Structural Mechanics. Pergamon Press, 1960).

    Google Scholar 

  13. I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of Elasticity for Nonclassical Domains (Nauka, Moscow, 1979).

    MATH  Google Scholar 

  14. V. A. Babeshko, E. V. Glushakov, and Zh. F. Zinchenko, Dynamics of Inhomogeneous Elastic Media (Nauka, Moscow, 1989).

    Google Scholar 

  15. M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations (Nauka, Moscow, 1969).

    MATH  Google Scholar 

  16. M. S. Agranivich and M. I. Vishik, “Elliptic Problems with a Parameter and Parabolic Problems of General Type,” Uspekhi Mat. Nauk 19 (3), 53–161 (1964) [Russian Math. Surveys 19, (3) 53–157 (1964)].

    MathSciNet  Google Scholar 

  17. S. A. Nazarov and A. V. Shanin, “Trapped Modes in Angular Joints of 2D Waveguides,” Appl. Anal. 93 (3), 572–582 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. S. Jones, “The Eigenvalues of ∇2 u + λu = 0 When the Boundary Conditions Are Given on Semi-Infinite Domains,” Proc. Camb. Phil. Soc. 49, 668–684 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. A. Nazarov, “Discrete Spectrum of Cranked, Branching, and PeriodicWaveguides,” Algebra i Analiz 23 (2), 206–247 (2011) [St. Petersburg Math. J. 23, (2) 351–379 (2012)].

    Google Scholar 

  20. M. Dauge and N. Raymond, “Plane Waveguides with Corners in the Small Angle Limit,” J. Math. Phys. 53 (2012) DOI: 10.1063/1.4769993.

    Google Scholar 

  21. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rodes. Dimension Reduction and Integral Estimates (Nauchnaya Kniga, Novosibirsk, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Spectrum of a Problem of Elasticity Theory in the Union of Several Infinite Layers. Russ. J. Math. Phys. 25, 73–87 (2018). https://doi.org/10.1134/S1061920818010077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920818010077

Navigation