Skip to main content
Log in

On Boundary Value Problems for Fractional-Order Differential Equations

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

The article is devoted to the study of boundary value problems for a fractional-order convection-diffusion equation with memory effect. We construct two-layer monotone schemes with weights of the second order accuracy with respect to the time and space variables. We prove the uniqueness and stability for the solution with respect to the initial data and right-hand side and also the convergence of the solution of the difference scheme to the solution of the corresponding differential problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Alikhanov, “A priori estimates for solutions of boundary value problems for fractional-order equations,” Differ. Uravn. 46, 658 (2010) [Differ. Equ. 46, 660 (2010)].

    Article  MathSciNet  Google Scholar 

  2. A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation,” J. Comput. Phys. 280, 424 (2015).

    Article  MathSciNet  Google Scholar 

  3. M. Kh. Beshtokov, “Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms,” Differ. Uravn. 54, 249 (2018) [Differ. Equ. 54, 250 (2018)].

    Article  MathSciNet  Google Scholar 

  4. M. Kh. Beshtokov, “Local and nonlocal boundary value problems for degenerating and nondegenerating pseudoparabolic equations with a Riemann-Liouville fractional derivative,” Differ. Uravn. 54, 763 (2018) [Differ. Equ. 54, 758 (2018)].

    Article  MathSciNet  Google Scholar 

  5. M. Kh. Beshtokov, “Nonlocal boundary value problems for Sobolev-type fractional equations and grid methods for solving them,” Mat. Tr. 21:2, 72 (2018) [Sib. Adv. Math. 29, 1 (2019)].

    Article  MathSciNet  Google Scholar 

  6. M. Kh. Beshtokov, “Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving,” Izv. Vyssh. Uchebn. Zaved., Mat. No. 2, 3 (2019) [Russ. Math. 63 (2), 1 (2019)].

  7. K. Diethelm and G. Walz, “Numerical solution of fractional order differential equations by extrapolation,” Numer. Algorithms. 16, 231 (1997).

    Article  MathSciNet  Google Scholar 

  8. V. M. Golovizin, V. P. Kiselev, and I. A. Korotkiĭ, Numerical Methods for Solving a Diffusion Equation with Fractional Time Derivative in the One-Dimensional Case, Preprint No. IBRAE-2003-12 (The Nuclear Safety Institute of the Russian Academy of Sciences, Moscow, 2003) [in Russian].

  9. D. Li, H. L. Liao, W. Sun, J. Wang, and J. Zhang, “Analysis of \(L1 \)-Galerkin FEMs for time-fractional nonlinear parabolic problems,” Commun. Comput. Phys. 24, 86 (2018).

    MathSciNet  MATH  Google Scholar 

  10. G. I. Marchuk, Mathematical Modelling in the Problem of Environment (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  11. A. M. Nakhushev, Fractional Calculus and Its Applications (Fizmatlit, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  12. V. G. Pimenov, “Numerical methods for solving the evolutionary equations with delay,” Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. No. 1(39), 103 (2012).

  13. V. G. Pimenov, “Numerical methods for fractional advection-diffusion equation with heredity,” J. Math. Sci. (N. Y.). 230, 737 (2018).

    Article  Google Scholar 

  14. V. G. Pimenov and A. S. Khendi, “An implicit numerical method for solving a fractional advection-diffusion equation with delay,” Tr. Inst. Mat. Mekh. 22:2, 218 (2016).

    MathSciNet  Google Scholar 

  15. V. G. Pimenov and A. S. Hendy, “Fractional analog of Crank–Nicholson method for the two sided space fractional partial equation with functional delay,” Ural Math. J. 2:1, 48 (2016).

    Article  Google Scholar 

  16. A. A. Samarskiĭ, The Theory of Difference Schemes (Nauka, Moscow, 1983; Marcel Dekker, New York, NY, 2001).

    Google Scholar 

  17. A. A. Samarskii and A. V. Gulin, Stability of Difference Schemes (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  18. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection-Diffusion Problems (Editorial URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  19. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987) [in Russian].

    MATH  Google Scholar 

  20. F. I. Taukenova and M. Kh. Shkhanukov-Lafishev, “Difference methods for solving boundary value problems for fractional differential equations,” Zh. Vychisl. Mat. Mat. Fiz. 46, 1871 (2006) [Comp. Math. Math. Phys. 46, 1785 (2006)].

    Article  MathSciNet  Google Scholar 

  21. V. V. Uchaikin, The Method of Fractional Derivatives (Artishok, Ulyanovsk, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Kh. Beshtokov or F. A. Erzhibova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshtokov, M.K., Erzhibova, F.A. On Boundary Value Problems for Fractional-Order Differential Equations. Sib. Adv. Math. 31, 229–243 (2021). https://doi.org/10.1134/S1055134421040015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1055134421040015

Keywords

Navigation