Skip to main content
Log in

Influence of phase interface properties on mechanical characteristics of metal ceramic composites

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper reports on theoretical study to elucidate the influence of geometric (width) and mechanical characteristics of phase interfaces on strength, ultimate strain, and fracture energy of metal ceramic composites. The study was performed by computer simulation with the movable cellular automaton method and a well-developed mesoscale structural composite model that takes explicit account of wide transition zones between reinforcing inclusions and the matrix. It is shown that the formation of relatively wide “ceramic inclusions-binder” interfaces with gradual variation in mechanical properties allows a considerable increase in the mechanical properties of the composite. Of great significance is not only the interface width but also the gradient of mechanical properties in the transition zone. The presence of defects and inclusions of nano- and atomic scales in interface regions can increase internal stresses in these regions, induce a steep gradient of mechanical properties in them, and hence decrease strain characteristics and fracture energy of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chawla, N. and Chawla, K.K., Metal Matrix Composites, New York: Springer, 2006.

    Google Scholar 

  2. Kainer, K.U., Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, Kainer, K.U., Ed., Weinheim: Wiley-VCH Verlag, 2006, pp. 1–54.

  3. Mortensen, A., Concise Encyclopedia of Composite Materials, Oxford: Elsevier, 2000.

    Google Scholar 

  4. Pramanik, A., Zhang, L.C., and Arsecularante, J.A., Prediction of Cutting Forces in Machining of Metal Matrix Composites, Int. J. Mach. Tools Manufacture, vol. 46, no. 14, pp. 1795–1803.

  5. Ovcharenko, V.E., Yu, B., and Psakhie, S.G., Electron-Beam Treatment of Tungsten-Free TiC/NiCr Cermet. I: Influence of Subsurface Layer Microctructure on Resistance to Wear during Cutting of Metals, J. Mater. Sci. Tech., 2005, vol. 21, no. 3, pp. 427–429.

    Google Scholar 

  6. Ovcharenko, V.E., Yu, B., Psakhie, S.G., and Lapshin, O.V., Electron-Beam Treatment of Tungsten-Free TiC/NiCr Cermet II: Structural Transformations in the Subsurface Layer, J. Mater. Sci. Tech., 2006, vol. 22, no. 4, pp. 511–513.

    Google Scholar 

  7. Vityaz, P.A. and Grechikhin, L.I., Nanotechnology for Producing Titanium-Based Cermets, Phys. Mesomech., 2004, vol. 7, no. 5–6, pp. 51–56.

    Google Scholar 

  8. Chawla, N. and Chawla, K.K., Microstructure-Based Modeling of Deformation in Particle Reinforced Metal Matrix Composites, J. Mater. Sci., 2006, vol. 41, pp. 913–925.

    Article  ADS  Google Scholar 

  9. Ayyar, A. and Chawla, N., Microstructure-Based Modeling of Crack Growth in Particle Reinforced Composites, Compos. Sci. Technol., 2006, vol. 66, pp. 1980–1994.

    Article  Google Scholar 

  10. Kulkov, S.N., Formation of Micro- and Mesostructures in Metal Matrix Composites under Mechanical Loading, Phys. Mesomech., 2006, vol. 9, no. 1–2, pp. 73–80.

    Google Scholar 

  11. Bondar, M.P., Korchagin, M.A., Obodovskii, E.S., Panin, S.V., and Lukyanov, Ya.L., Quasidynamic Compaction of a Mesostructural Material with Inclusions Reinforced by Nanocrystalline Particles, Phys. Mesomech., 2009, vol. 12, no. 1–2, pp. 94–100.

    Article  Google Scholar 

  12. Ivanov, Yu.F., Koval, N.N., and Ovcharenko, V.E., Electron-Beam Modification of TiC-NiCr Solid Solution. Surface Relief, Izv. Vuzov. Chern. Metal., 2007, no. 12, pp. 59–60.

    Google Scholar 

  13. Ovcharenko, V.E., Structural Evolution of a Plasma-Sprayed Metal-Ceramic Coating due to Pulsed Electron-Beam Treatment, Fiz. Khim. Obrab. Mat., 2010, no. 1, pp. 71–77.

    Google Scholar 

  14. Psakhie, S.G., Smolin, A.Y., Shilko, E.V., Anikeeva, G.M., Pogozhev, Y.S., Petrzhik, M.I., and Levashov E.A., Modeling Nanoindentation of TiCCaPON Coating on Ti Substrate using Movable Cellular Automaton Method, Comp. Mater. Sci., 2013, vol. 76, pp. 89–98.

    Article  Google Scholar 

  15. Volkov-Bogorodsky, D.B., Evtushenko, Yu.G., Zubov, V.I., and Lurie, S.A., Calculation of Deformations in Nanocomposites Using the Block Multipole Method with the Analytical-Numerical Account of the Scale Effects, Comput. Math. Math. Phys., 2006, vol. 46, no. 7, pp. 1234–1253.

    Article  MathSciNet  Google Scholar 

  16. Singh, G., Yu, Y., Ernst, F., and Raj, R., Shear Strength and Sliding at a Metal-Ceramic (Aluminium-Spinel) Interface at Ambient and Elevated Temperatures, Acta Mater., 2007, vol. 55, pp. 3049–3057.

    Article  Google Scholar 

  17. Oesterle, W., Prietzel, C., and Dmitriev, A.I., Investigation of Surface Film Nanostructure and Assessment of its Impact on Friction Force Stabilization during Automotive Braking, Int. J. Mater. Res., 2010, vol. 101, no. 5, pp. 669–675.

    Article  Google Scholar 

  18. Dmitriev, A.I. and Oesterle, W., Modeling of Brake Pad-Disc Interface with Emphasis to Dynamics and Deformation of Structures, Tribol. Int., 2010, vol. 43, no. 4, pp. 719–727.

    Article  Google Scholar 

  19. Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Yu., Smolin, A.Yu., Shilko, E.V., Dmitriev, A.I., Blatnik, S., Spegel, M., and Zavsek, S., Movable Cellular Automata Method for Simulating Materials with Mesostructure, Theor. Appl. Fract. Mech., 2001, vol. 37, pp. 311–334.

    Article  Google Scholar 

  20. Psakhie, S.G., Shilko, E.V., Smolin, A.Yu., Dimaki, A.V., Dmitriev, A.I., Konovalenko, Ig.S., Astafurov, S.V., and Zavshek, S. Approach to Simulation of Deformation and Fracture of Hierarchically Organized Heterogeneous Media, Including Contrast Media, Phys. Mesomech., 2011, vol. 14, no. 5–6, pp. 224–248.

    Article  Google Scholar 

  21. Psakhie, S.G., Horie, Y., Shilko, E.V., Smolin, A.Yu., Dmitriev, A.I., and Astafurov, S.V., Discrete Element Approach to Modeling Heterogeneous Elastic-Plastic Materials and Media, Int. J. Terraspace Sci. Engng., 2011, vol. 3(1), pp. 93–125.

    Google Scholar 

  22. Psakhie, S., Shilko, E., Smolin, A., Astafurov, S., and Ovcharenko, V., Development of a Formalism of Movable Cellular Automaton Method for Numerical Modeling of Fracture of Heterogeneous Elastic-Plastic Materials, Fract. Struct. Integrity, 2013, no. 24, pp. 26–59.

    Google Scholar 

  23. Cundall, P.A. and Strack, O.D.L., A Discrete Numerical Model for Granular Assemblies, Geotechnique, 1979, vol. 29, no. 1, pp. 47–65.

    Article  Google Scholar 

  24. Bicanic, N., Discrete Element Methods, Encyclopedia of Computational Mechanics, Stein, E., de Borst, R., and Hughes, J.R., Eds., Chichester: Wiley, 2004, pp. 311–337.

    Google Scholar 

  25. Munjiza, A., The Combined Finite-Discrete Element Method, Chichester: Wiley, 2004.

    Book  Google Scholar 

  26. Astafurov, S.V., Shilko, E.V., Dimaki, A.V., and Psakhie, S.G., Development of Multiscale Approach to Modeling Mechanical Response of High-Strength Intermetallic Alloys on the Base of Movable Cellular Automaton Method, Proc. III Int. Conf. on Particle-Based Methods. Fundamentals and Applications (Particles-2013), 2013, pp. 624–629.

    Google Scholar 

  27. Psakhie, S., Ovcharenko, V., Yu, B., Shilko, E., Astafurov, S., Ivanov, Yu., Byeli, A., and Mokhovikov, A., Influence of Features of Interphase Boundaries on Mechanical Properties and Fracture Pattern in Metal-Ceramic Composites, J. Mater. Sci. Tech., 2013, vol. 29, no. 11, pp. 1025–1034.

    Article  Google Scholar 

  28. Psakhie, S.G., Smolin, A.Yu., Stefanov, Yu.P., Makarov, P.V., and Chertov M.A., Modeling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches, Tech. Phys. Let., 2004, vol. 30, no. 9, pp. 712–714.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Astafurov.

Additional information

Original Russian Text © S.V. Astafurov, E.V. Shilko, V.E. Ovcharenko, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 3, pp. 53–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurov, S.V., Shilko, E.V. & Ovcharenko, V.E. Influence of phase interface properties on mechanical characteristics of metal ceramic composites. Phys Mesomech 17, 282–291 (2014). https://doi.org/10.1134/S1029959914040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959914040055

Keywords

Navigation