Skip to main content
Log in

State equation of condensed matter at high pressure: D-U diagram approach

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

For solids and liquids, an equation of state is suggested at high pressures up to a few megabars, for densities greater than that at normal conditions and for temperatures up to the melting point. Shock wave loading test data are analyzed for 40 basic chemical elements, and they prove the state equation suggested, within the limits of test error. The method is based on the analysis of D-U diagrams where D is the shock wave velocity and U is the material velocity behind the shock wave (both with respect to the material in front of the shock wave). Based on the state equation suggested the velocity of shock wave is shown to be a linear function of the material velocity behind the shock wave, the function being a specific characteristic of the material and its structure. Most significant anomaly belonging to carbon, iron, ice, and water is explained by the formation of new phases at high pressure, with two new phases of iron, and one phase in the case of water. For water, a simple nearly exact equation of state is suggested for pressures from 0.1 MPa to 150 GPa. For pressures from 0.1 to 300 MPa, it fits very well the extremely complicated state equation of the American standard obtained by static tests, and for pressures from 2 to 50 GPa it fits well the data of shock wave tests. In the pressure range from 45 to 1500 GPa liquid water becomes solid, which equation of state coincides with that of alkaline metal sodium. The model of ideal solid as contrary to ideal gas is introduced, with internal energy of ideal solid depending only on stresses or strains (and only on pressure or density, at high pressures). The equations of state for iron, diamond, pyrolithic graphite, and for several phases of ice are as well derived based on test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeldovich, Ya.B. and Raizer, Yu.P., Physics of Shockwaves and High Temperature Hydrodynamics Phenomena, New York: Academic Press, 1967, vol. 1, 2.

    Google Scholar 

  2. Cherepanov, G.P., Methods of Fracture Mechanics: Solid Matter Physics, Dordrecht: Kluwer, 1997.

    MATH  Google Scholar 

  3. Bakanova, A.A., Dudoladov, I.P., and Trunin, R.F., Compression of Alkali Metals by Strong Shock Waves, Sov. Phys. Solid State, 1965, vol. 7, pp. 1307–1313.

    Google Scholar 

  4. Compendium of Shock Wave Data, Thiel, M. van J., Ed., Livermore: Lawrence Radiation Laboratory, California University Press, 1966.

    Google Scholar 

  5. Rybakov, A.P., Solids under Pressure and Temperature Shock Compression, Moscow: Atominform CSRI, 1978.

    Google Scholar 

  6. Pavlovsky, M.N., Shock Compression of Diamond, Solid State Phys., 1971, vol. 13, no. 3, pp. 741–743.

    Google Scholar 

  7. McQueen, R.G., Fritz, J.N., and Marsh, S.P., On the Composition of the Earth’s Interior, J. Geophys. Res., 1964, vol. 69, p. 2947–2965.

    Article  ADS  Google Scholar 

  8. Rice, M.H., McQueen, R.G., and Walsh, J.M., Compression of Solids by Strong Shock Waves, Solid State Physics, Vol. 6, New York: Academic Press, 1958, pp. 1–63.

    Google Scholar 

  9. Coleburn, N.L., The Compressibility of Pyrolitic Graphite, J. Chem. Phys., 1964, vol. 40, p. 71–77.

    ADS  Google Scholar 

  10. Zubarev, V.N. and Telegin, G.S., The Impact Compressibility of Liquid Nitrogen and Solid Carbon Dioxide, Sov. Phys. Dokl., 1962, vol. 7, pp. 34–36.

    ADS  Google Scholar 

  11. Trunin, R.F., Shock Compressibility of Condensed Materials in Strong Shock Waves Generated by Underground Nuclear Explosions, Phys.-Usp., 1994, vol. 37, pp. 1123–1145.

    ADS  Google Scholar 

  12. Berger, J., Joigneau, S., and Bottet G., Comportement du soufre sous l’action d’une onde de choc, C.R. Acad. Sci. Paris, 1960, vol. 250, p. 4331–4348.

    Google Scholar 

  13. Berger, J., Camion, T., and Bourreau, H., Etudes des conditions d’interfgrence de deux chocs de meme intensity dans un solide, Les Ondes de Detonation, Gif-sur-Yvette: Colloque CNRS, 1961, pp. 481–484.

    Google Scholar 

  14. McQueen, R.G. and Marsh, S.P., Equation of State of Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars, J. Appl. Phys., 1960, vol. 31, pp. 1253–1269.

    Article  ADS  Google Scholar 

  15. Al’tshuler, L.V., Krupnikov, K.K., Ledeneev, B.N., Zhuchihin, V.I., and Brazhnik, M.I., Dynamic Compressibility and the Equation of State of Iron at High Pressures, JETP, 1958, vol. 34, p. pp. 606–614.

    Google Scholar 

  16. Al’tshuler, L.V., Krupnikov, K.K., and Brazhnik, M.I., Dynamic Compressibility of Metals at Pressures from Four Thousand to Four Million Atmospheres, JETP, 1958, vol. 33, pp. 614–619.

    Google Scholar 

  17. LASL Shock Wave Hugoniot Data, Marsh, S.P., Ed., Berkeley: California University Press, 1980.

    Google Scholar 

  18. Alder, B.I. and Christian, R.H., Destruction of Diatomic Bonds by Pressure, Phys. Rev. Lett., 1960, vol. 4, p. 450–452.

    Article  ADS  Google Scholar 

  19. Walsh, J.M. and Rice, M.H., Dynamic Compression of Liquids from Measurement on Strong Shock Waves, J. Chem. Phys., 1957, vol. 26, p. 815–823.

    ADS  Google Scholar 

  20. Stewart, S.T. and Ahrens, T.J., A New H20 Hugoniot: Implications for Planetary Impact Events, Shock Compression of Condensed Matter, Furnish, M., Ed., Portland, OR, USA, 2003.

    Google Scholar 

  21. Walsh, J.M. and Christian, R.H., Equation of State of Metals from Shock Waves, Phys. Rev., 1955, vol. 97, pp. 1544–1556.

    Article  ADS  Google Scholar 

  22. Galin, L.A. and Cherepanov, G.P., On Self-sustaining Fracture of High-stressed Brittle Materials, Sov. Phys. Dokl., 1966, vol. 11, pp. 267–269.

    ADS  Google Scholar 

  23. Millett, J. and Borne, N., Effect of Internal Strain on the Propagation of Failure in Shock Loaded Soda-Lime Glass, J. Appl. Phys., 2004, vol. 95, pp. 4681–4686.

    Article  ADS  Google Scholar 

  24. Cherepanov, G.P., Fracture Waves Revisited, Int. J. Fract., 2009, vol. 159, pp. 81–84.

    Article  Google Scholar 

  25. Cherepanov, G.P., Fracture Mechanics, Moscow-Izhevsk: IKI Publishers, 2012.

    Google Scholar 

  26. Alder, B.I. and Christian, R.H., Behavior of Strongly Shocked Carbon, Phys. Rev. Lett., 1961, vol. 7, p. 367–369.

    Article  ADS  Google Scholar 

  27. Pavlovski, M. and Drakin, V.N., On Metallic Phase of Carbon, JETP Lett., 1966, vol. 4, p. 116–118.

    ADS  Google Scholar 

  28. Zharkov, V.N. and Kalinin, V.A., Equations of State for Solids at High Pressures and Temperatures, Moscow: Nauka, 1968.

    Google Scholar 

  29. Al’tshuler, L.V., Trunin, R.F., Krupnikov, K.K., and Panov, N.V., Explosive Laboratory Devices for Shock Wave Compression Studies, Phys.-Usp., 1996, vol. 39, pp. 539–544.

    ADS  Google Scholar 

  30. Al’tshuler, L.V., Bakanova, A.A., and Trunin, R.F., Phase Transition of Water Compressed by Strong Shock Waves, Sov. Phys. Dokl., 1958, vol. 121, no. 3, pp. 761–763.

    ADS  Google Scholar 

  31. Haar, L., Gallagher, J.S., and Kell, G., NBC/NRC Steam Tables, New York: Hemisphere, 1984.

    Google Scholar 

  32. Trunin, R.F., Studies of Extreme States of Condensed Matters by Shock Waves: the Hugoniot Equation, Moscow: Nauka, 2006.

    Google Scholar 

  33. Trunin, R.F., Urlin, V.D., and Medvedev, A.B., Dynamic Compression of Hydrogen Isotopes at Megabar Pressures, Phys.-Usp., 2010, vol. 53, no. 6, pp. 577–593.

    ADS  Google Scholar 

  34. Trunin, R.F., Extreme States of Metals: Investigation Using Shock Wave Techniques, Phys.-Usp., 2011, vol. 54, no. 4, pp. 397–403.

    ADS  Google Scholar 

  35. Trunin, R.F., Boriskov, G.V., Belov, S.I., Bykov, A.I., Il’kaev, R.I., Simakov, G.V., Urlin, V.D., and Shuikin, A.N., Shock-Wave Compression of Hydrogen at Pressures up to 65 GPa, JETP Lett., 2005, vol. 82, no. 5, pp. 284–286.

    Article  ADS  Google Scholar 

  36. Trunin, R.F., Boriskov, G.V., Bykov, A.I., Medvedev, A.B., Simakov, G.V., and Shuikin, A.N., Shock Compression of Liquid Nitrogen at a Pressure of 320 GPa, JETP Lett., 2008, vol. 88, no. 3, pp. 189–191.

    Article  ADS  Google Scholar 

  37. Trunin, R.F., Podurets, M.A., Popov, L.V., Zubarev, V.N., Bakanova, A.A., Ktitorov, V.M., Sevast’anov, A.G., Simakov, G.V., and Dudoladov, I.P., Measurement of the Compressibility of Iron at 5.5 TPa, JETP, 1992, vol. 75, no. 4, pp. 777–780.

    Google Scholar 

  38. Trunin, R.F., Podurets, M.A., Popov, L.V., Moiseyev, B.N., Simakov, G.V., and Sevast’anov, A.G., Determination of the shock compressibility of Iron at Pressures up to 10 TPa (100 Mbar), JETP, 1993, vol. 76, no. 6, pp. 1095–1098.

    ADS  Google Scholar 

  39. Kormer, S.B., Optical Study of the Characteristics of Shock-Compressed Condensed Dielectrics, Sov. Phys.-Usp., 1968, vol. 11, pp. 229–254.

    Article  ADS  Google Scholar 

  40. Rybakov, A.P., Phase Transformation of Water under Shock Compression, J. Appl. Mech. Tech. Phys., 1996, vol. 37, pp. 629–633.

    Article  ADS  Google Scholar 

  41. Afanasenkov, A.N., Bogomolov, V.M., and Voskoboynikov, I.M., Generalized Hugoniot of Condensed Matter, J. Appl. Mech. Tech. Phys., 1969, vol. 40, pp. 137–141.

    Google Scholar 

  42. Bakanova, A.A., Zubarev, V.N., Sutulov, Yu.N., and Trunin, R.F., Thermodynamic Properties of Water at High Pressures and Temperatures, JETP, 1975, vol. 41, no. 3, pp. 544–548.

    ADS  Google Scholar 

  43. http://teos.ficp.ac.ru/rusbank/catsearch.php.

  44. Rice, M.H., Pressure-Volume Relations for the Alkali Metals from Shock-Wave Measurements, J. Phys. Chem. Solids, 1965, vol. 26, p. 483–492.

    ADS  Google Scholar 

  45. Compendium of Shock Wave Data, Thiel, M. van J., Ed., Livermore: Lawrence Livermore Laboratory, 1977, Report UCRL-50108, pp. 1–329.

    Google Scholar 

  46. Trunin, R.F., Zhernokletov, M.V., Kuznetsov, N.F., and Sutulov, Yu.N., Shock Compressibility of Saturated Aromatic Hydrocarbons, Sov. J. Chem. Phys., 1989, vol. 8, no. 4, pp. 881–892.

    Google Scholar 

  47. Trunin, R.F., Zhernokletov, M.V., Kuznetsov, N.F., Radchenko, O.A., Sychevskaya, N.V., and Shutov, V.V., Compression of Organic Liquids in Shock Waves, Sov. J. Chem. Phys., 1992, vol. 11, no. 3, pp. 424–432.

    Google Scholar 

  48. Nigmatulin, R.I. and Bolotnova, R.Kh., Wide-Range Equation of State of Water and Steam: Simplified Form, High Temperature, 2011, vol. 49, no. 2, pp. 303–306.

    Article  Google Scholar 

  49. http://ungu.ru/zakirov-waterstateequation.

  50. Ahrens, T.J. and Roderman, M.N., Immersed-Foil Method for Measuring Shock Wave Profiles in Solids, J. Appl. Phys., 1966, vol. 37, no. 3, pp. 4758–4763.

    Article  ADS  Google Scholar 

  51. Trunin, R.F., Gudarenko, L.F., Zhernokletov, M.V., and Simakov, G.V., Test Data on Shock Compression and Adiabatic Expansion of Condensed Matter, Sarov: RFNK, 2001.

    Google Scholar 

  52. Volkov, L.P., Voloshin, N.P., Mangasarov, P.A., Simonenko, V.A., Sinko, G.V., and Sorokin, V.A., Shock Compressibility of Water at a Pressure of 1 mbar, JETP Lett., 1980, vol. 31, no. 9, pp. 531–535.

    Google Scholar 

  53. Sharipdzhanov, I., Al’tshuler, L., and Brusnikin, S.E., Anomalies of Shock and Isoentropic Compressibility of Water, Combust. Explos. Shock Waves, 1983, vol. 19, pp. 668–672.

    Article  Google Scholar 

  54. Podurets, M.A., Simakov, G.V., Trunin, R.F., Popov, L.V., and Moiseev, B.N., Compression of Water by Strong Shock Waves, JETP, 1972, vol. 35, pp. 375–376.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Cherepanov.

Additional information

Original Russian Text © G.P. Cherepanov, K.R. Zakirov, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 4, pp. 13–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, G.P., Zakirov, K.R. State equation of condensed matter at high pressure: D-U diagram approach. Phys Mesomech 17, 163–177 (2014). https://doi.org/10.1134/S1029959914030011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959914030011

Keywords

Navigation