Skip to main content
Log in

Scalar Vector and Phase Characteristics of an Acoustic Field in an Arbitrary Regular Inhomogeneous Liquid Medium

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this work, by using the wave equations proposed by the authors for the vector of the vibrational velocity of particles and the well-known equation for acoustic pressure in an inhomogeneous stationary medium, the influence of the parameters of the medium on the vector-phase properties of the acoustic field is investigated. For the first time, analytical equations are found for the phases and moduli of the vectors of the complex intensity and acoustic energy flux density (acoustic intensity vector), vibrational velocity, pressure, and energy density, which establish a relation between them and both the medium density and the speed of sound. The proposed approach allows an analytical analysis of the influence of the density of and speed of sound in an inhomogeneous medium on the parameters of the acoustic field. In turn this approach opens possibilities of solving the reciprocal problem on finding the spatial distribution of the density and the speed of sound of a medium on the basis of measured values of the acoustic pressure and the vibrational velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Gordienko, Vector-Phase Methods in Acoustics (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  2. F. J. Fahy, Sound Intensity, 2nd ed. (Elsevier, London, 1989).

    Google Scholar 

  3. V. P. Dzyuba, Scalar-Vector Methods of Theoretical Acoustics (Dalnauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  4. D. R. dall’Osto, J. Acoust. Soc. Am. 138, 1767 (2015). https://doi.org/10.1121/1.4933587

  5. P. N. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

    Google Scholar 

  6. L. Brekhovskikh, Waves in Layered Media (Elsevier, Amsterdam, 2012).

    Google Scholar 

  7. E. A. Skelton, J. Sound Vibr. 152, 157 (1992). https://doi.org/10.1016/0022-460X(92)90072-6

  8. A. Fichtner, Seismol. Res. Lett. 92, 3899 (2021). https://doi.org/10.1785/0220210230

    Article  Google Scholar 

  9. X. Olny and C. Boutin, J. Acoust. Soc. Am. 114, 73 (2003). https://doi.org/10.1121/1.1534607

    Article  ADS  Google Scholar 

  10. J. N. Hau and B. Müller, Phys. Fluids 30, 016105 (2018). https://doi.org/10.1063/1.4999044

  11. L. Friedland, G. Marcus, J. S. Wurtele, and P. Michel, Phys. Plasmas 26, 092109 (2019). https://doi.org/10.1063/1.5122300

  12. W. Kalkofen, P. Rossi, G. Bodo, and S. Massaglia, Astron. Astrophys. 520, A100.1 (2010). https://doi.org/10.1051/0004-6361/200912996

  13. N. A. Petersson and B. Sjuogreen, J. Sci. Comput. 74, 290 (2018). https://doi.org/10.1007/s10915-017-0434-7

    Article  MathSciNet  Google Scholar 

  14. P. Ulmschneider and W. Kalkofen, Astron. Astrophys. 57, 199 (1977).

    ADS  Google Scholar 

  15. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

    MATH  Google Scholar 

  16. S. Mishra, Ch. Schwab, and J. Šukys, J. Comput. Phys. 31, 192 (2016). https://doi.org/10.1016/j.jcp.2016.02.014

    Article  ADS  Google Scholar 

  17. H. Hamzehpour, M. Asgari, and M. Sahimi, Phys. Rev. E 93, 063305 (2016). https://doi.org/10.1103/PhysRevE.93.063305

  18. J. A. Hargreaves and Y. W. Lam, Wave Motion 87, 4 (2019). https://doi.org/10.1016/j.wavemoti.2018.07.003

    Article  MathSciNet  Google Scholar 

  19. E. Perras, Proc. Appl. Math. Mech. 19, e201900282 (2019). https://doi.org/10.1002/pamm.201900282

  20. R. V. Romashko, Yu. N. Kul’chin, D. V. Storozhenko, M. N. Bezruk, and V. P. Dzyuba, Quantum Electron. 51, 265 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00323.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Dzyuba, R. V. Romashko or Yu. N. Kulchin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzyuba, V.P., Romashko, R.V. & Kulchin, Y.N. Scalar Vector and Phase Characteristics of an Acoustic Field in an Arbitrary Regular Inhomogeneous Liquid Medium. Dokl. Phys. 67, 47–50 (2022). https://doi.org/10.1134/S1028335822020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822020045

Keywords:

Navigation