Skip to main content
Log in

Calculation of the Frequencies of Vibration-Rotation Transitions of the H36Cl Molecule

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Dunham coefficients Ymj of the H36Cl molecule are calculated based on previously determined mass-independent spectroscopic parameters Umj, \(\Delta _{{mj}}^{A}\) and \(\Delta _{{mj}}^{B}\). Pure rotational and vibration–rotation transitions of the (1–0), (2–0), and (3–0) bands are presented up to Jmax = 25 for the first time. The calculated and observed line positions are compared for the fundamental and first overtone bands. The RKR potential of the H36Cl molecule is retrieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60 (3), 941–943 (2011). https://doi.org/10.13182/FST11-A12570

    Article  ADS  Google Scholar 

  2. M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm–1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013). https://doi.org/10.1016/j.jms.2013.05.016

    Article  ADS  Google Scholar 

  3. C. Bray, A. Pailloux, and S. Plumeri, “Triated water detection in the 2.17 mm spectral region by cavity ring down spectroscopy,” Nuclear Instrum. Methods Phys. Res. A 789, 43–49 (2015). https://doi.org/10.1016/j.nima.2015.03.064

    Article  ADS  Google Scholar 

  4. J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of HTO around 3.8 microns,” J. Quant. Spectrosc. Radiat. Transfer 230, 61–64 (2019). https://doi.org/10.1016/j.jqsrt.2019.03.017

    Article  ADS  Google Scholar 

  5. J. Reinking, V. Hermann, J. Muller, M. Schlösser, F. Hase, and J. Orphal, “The fundamental ν3 band of DTO and the 2ν1 overtone band of HTO from the analysis of a high-resolution spectrum of tritiated water vapour,” J. Mol. Spectrosc. 370, 111295 (2020). https://doi.org/10.1016/j.jms.2020.111295

    Article  Google Scholar 

  6. V. Hermann, M. Kamrad, J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “Analysis of the ν1 + ν2, ν2 + ν3, ν1 + ν3 and 2ν2 + ν3 bands of HT16O,” J. Quant. Spectrosc. Radiat. Transfer 276, 107881 (2021). https://doi.org/10.1016/j.jqsrt.2021.107881

    Article  Google Scholar 

  7. G. Li, I. E. Gordon, L. S. Rothman, Y. Tan, S.-M. Hu, S. Kassi, A. Campargue, and E. S. Medvedev, “Rovibrational line lists for nine isotopologues of the CO molecule in the X 1 S + ground electronic state,” Astrophys. J., Suppl. Ser. 216 (2015). https://doi.org/10.1088/0067-0049/216/1/15

  8. V. I. Perevalov and E. V. Karlovets, “Line intensities of the radioactive isotopologues of carbon monoxide,” J. Mol. Spectrosc. 364, 111184 (2019). https://doi.org/10.1016/j.jms.2019.111184

    Article  Google Scholar 

  9. A. H. Nielsen and R. T. Lagemann, “The infrared spectrum and molecular constants of 14CO2,” J. Chem. Phys. 22 (1), 36–39 (1954). https://doi.org/10.1063/1.1739851

    Article  ADS  Google Scholar 

  10. M. Wahlen, R. S. Eng, and K. W. Nill, “Tunable diode laser spectroscopy of 14CO2: Absorption coefficients and analytical applications,” Appl. Opt. 16 (9), 2350–2352 (1977). https://doi.org/10.1364/AO.16.002350

    Article  ADS  Google Scholar 

  11. R. S. Eng, K. W. Nill, and M. Wahlen, “Tunable diode laser spectroscopic determination of ν3 band center of 14CO2 at 4.5 mm,” Appl. Opt. 16 (12), 3072–3074 (1977). https://doi.org/10.1364/AO.16.003072

    Article  ADS  Google Scholar 

  12. R. L. Sams and J. R. De Voe, “Diode laser measurement of the ν3 band of 14CO2,” J. Mol. Spectrosc. 128 (1), 296–298 (1988). https://doi.org/10.1016/0022-2852(88)90226-3

    Article  ADS  Google Scholar 

  13. S. Dobos, G. Winnewisser, F. Kling, and J. Mink, “Improved spectroscopic constants for 14C16O2 obtained from the ν3 band,” Z. Naturforsch., A: Phys. Sci. 44a (7), 633–639 (1989). https://doi.org/10.1515/zna-1989-0705

    Article  Google Scholar 

  14. I. Galli, P. C. Pastor, G. Di Lonardo, L. Fusina, G. Giusfredi, D. Mazzotti, F. Tamassia, and P. De Natale, “The ν3 band of 14C16O2 molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy,” Mol. Phys. 109 (17-18), 2267–2272 (2011). https://doi.org/10.1080/00268976.2011.614284

    Article  ADS  Google Scholar 

  15. J. C. Siddoway, “Calculated and observed laser transitions using 14C16O2,” J. Appl. Phys. 39 (10), 4854–4855 (1968). https://doi.org/10.1063/1.1655857

    Article  ADS  Google Scholar 

  16. C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE–16 (11), 1195–1206 (1980). https://doi.org/10.1109/JQE.1980.1070392

    Article  ADS  Google Scholar 

  17. L. C. Bradley, K. L. Soohoo, and C. Freed, “Absolute frequencies of lasing transitions in nine CO2 isotopic species,” IEEE J. Quantum Electron. QE–22 (2), 234–267 (1986). https://doi.org/10.1109/JQE.1986.1072967

    Article  ADS  Google Scholar 

  18. A. A. Breier, B. Waßmuth, T. Büchling, G. W. Fuchs, J. Gauss, and T. F. Giesen, “A mass-independent expanded dunham analysis of aluminium monoxide and aluminium monosulfide,” J. Mol. Spectrsoc 350, 43–50 (2018). https://doi.org/10.1016/j.jms.2018.06.001

    Article  ADS  Google Scholar 

  19. W. R. Simpson, S. S. Brown, A. Saiz-Lopez, J. A. Thornton, and R. von Glasow, “Tropospheric halogen chemistry: Sources, cycling, and impacts,” Chem. Rev. 115 (10), 4035–4062 (2015). https://doi.org/10.1021/cr5006638

    Article  Google Scholar 

  20. A. Butz, A. S. Dinger, N. Bobrowski, J. Kostinek, L. Fieber, C. Fischerkeller, G. B. Giuffrida, F. Hase, F. Klappenbach, J. Kuhn, P. Lübcke, L. Tirpitz, and Q. Tu, “Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna,” Atmos. Meas. Tech. 10 (1), 1–14 (2017). https://doi.org/10.5194/amt-10-1-2017

    Article  Google Scholar 

  21. O. Korablev, K. S. Olsen, A. Trokhimovskiy, F. Lefevre, F. Montmessin, A. A. Fedorova, M. J. Toplis, J. Alday, D. A. Belyaev, A. Patrakeev, N. I. Ignatiev, A. V. Shakun, A. V. Grigoriev, L. Baggio, I. Abdenour, G. Lacombe, Y. S. Ivanov, S. Aoki, I. R. Thomas, F. Daerben, B. Ristic, J. T. Erwin, M. Patel, G. Bellucci, J.-J. Lopez-Moreno, and A. C. Vandaele, “Transient HCl in the atmosphere of Mars,” Sci. Adv. 7 (7) (2021). https://doi.org/10.1126/sciadv.abe4386

  22. Y. L. Yung and W. B. Demore, “Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution,” Icarus 51 (2), 199–247 (1982). https://doi.org/10.1016/0019-1035(82)90080-X

    Article  ADS  Google Scholar 

  23. G. A. Blake, V. G. Anicich, and Jr. W. T. Huntress, “Chemistry of chlorine in dense interstellar clouds,” Astrophys. J. 300 (2), 415–419 (1986). https://doi.org/10.1086/163815

    Article  ADS  Google Scholar 

  24. D. Huggle, A. Blinov, C. Stan-Sion, G. Korschinek, C. Scheffel, S. Massonet, L. Zerle, J. Beer, Y. Parrat, H. Gaeggeler, W. Hajdas, and E. Nolte, “Production of cosmogenic 36Cl on atmospheric argon,” Platen. Space Sci. 44 (2), 147–151 (1996). https://doi.org/10.1016/0032-0633(95)00085-2

    Article  ADS  Google Scholar 

  25. T. I. Velichko and S. N. Mikhailenko, “Analysis of rotational–vibrational transition frequencies of the HCl molecule and its RKR potentials in the ground electronic state,” Opt. Spectrosc. 125 (8), 156-164 (2018). https://doi.org/10.1134/S0030400X18080234

    Article  ADS  Google Scholar 

  26. S. Larnimaa, M. Vainio, and V. Ulvila, “Infrared spectroscopy of radioactive hydrogen chloride H36Cl,” J. Quant. Spectrosc. Radiat. Transfer 277, 107984 (2022). https://doi.org/10.1016/j.jqsrt.2021.107984

    Article  Google Scholar 

  27. J. A. Coxon and Ph. G. Hajigeorgiou, “Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI,” J. Quant. Spectrosc. Radiat. Transfer 151, 133–154 (2015). https://doi.org/10.1016/j.jqsrt.2014.08.028

    Article  ADS  Google Scholar 

  28. J. A. Coxon and Ph. G. Hajigeorgiou, “The radial Hamiltonians for the X 1 S + and B 1 S + states of HCl,” J. Mol. Spectrosc. 203 (1), 49–64 (2000). https://doi.org/10.1006/jmsp.2000.8155

    Article  ADS  Google Scholar 

  29. J. D. D. Martin and J. W. Hepburn, “Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D0(HCl),” J. Chem. Phys. 109 (19), 8139–8142 (1998). https://doi.org/10.1063/1.477476

    Article  ADS  Google Scholar 

  30. B. J. Drouin and H. Gupta, “Rotational spectra of vibrationally excited HCl,” in Proc. of the 67th Intern. Symp. on Molecular Spectroscopy (Columbus, USA, 2012), p. RF03. https://www.asc.ohio-state.edu/miller. 104/molspect/symposium_67/symposium/Abstracts/ p337.html.

  31. L. H. Jones and E. S. Robinson, “Infrared spectra and molecular constants of gaseous tritium bromide and tritium chloride,” J. Chem. Phys. 24 (6), 1246–1249 (1956). https://doi.org/10.1063/1.1742749

    Article  ADS  Google Scholar 

  32. J. A. Coxon and U. Roychowdhury, “Rotational analysis of the B 1 S +X 1 S + system of H35Cl,” Can. J. Phys. 63 (12), 1485–1497 (1985). https://doi.org/10.1139/P85-249

    Article  ADS  Google Scholar 

  33. J. A. Coxon, P. G. Hajigeorgiou, and K. P. Huber, “Rotational analysis of the B 1 S +X 1 S + emission bands of D35Cl,” J. Mol. Spectrosc. 131 (2), 288–300 (1988). https://doi.org/10.1016/0022-2852(88)90240-8

    Article  ADS  Google Scholar 

  34. T. I. Velichko and S. N. Mikhailenko, “Isotopically invariant Dunham parameters and the potential function of the HCl molecule,” Opt. Spectrosc. 92 (6), 871–876 (2002).

    Article  ADS  Google Scholar 

  35. R. Rydberg, “Graphische Darstellung Einiger Bandenspektroskopischer Ergebnisse,” Zeitschrift Phys. 73 (5-6), 376–385 (1932). https://doi.org/10.1007/BF01341146

    Article  ADS  MATH  Google Scholar 

  36. O. Klein, “Zur Berechnung Von Potentialkurven Fur Zweiatomige Molekule Mit Hilfe Von Spektraltermen,” Zeitschrift Phys. 76 (3-4), 226–235 (1932). https://doi.org/10.1007/BF01341814

    Article  ADS  MATH  Google Scholar 

  37. A. L. G. Rees, “The calculation of potential-energy curves from band-spectroscopic data,” Proc. Phys. Soc. 59 (6), 998–1008 (1947). https://doi.org/10.1088/0959-5309/59/6/310

    Article  ADS  MATH  Google Scholar 

  38. A. S. Pine and J. P. Looney, “N2 and air broadening in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 122 (1), 41–55 (1987). https://doi.org/10.1016/0022-2852(87)90217-7

    Article  ADS  Google Scholar 

  39. R. E. Asfin, A. V. Domanskaya, and C. Maul, “Broadening and shifting coefficients of rotation-vibrational lines in the fundamental and first overtone bands of HCl and HBr induced by oxygen and air,” J. Quant. Spectrosc. Radiat. Transfer 130, 296–303 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.014

    Article  ADS  Google Scholar 

  40. J. L. Dunham, “The energy levels of a rotating vibrator,” Phys. Rev. 41 (6), 721–731 (1932). https://doi.org/10.1103/physrev.41.721

    Article  ADS  MATH  Google Scholar 

  41. J. K. G. Watson, “The isotope dependence of diatomic dunham coefficients,” J. Mol. Spectrosc. 80 (3), 411–421 (1980). https://doi.org/10.1016/0022-2852(80)90152-6

    Article  ADS  Google Scholar 

  42. G. Audi, A. H. Wapstra, and C. Thibault, “The AME2003 atomic mass evaluation (II). Tables, graphs and references,” Nuclear Phys. A 729 (3-4), 337–676 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  43. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlaver, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, Vl. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, Auwera J.Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022). https://doi.org/10.1016/j.jqsrt.2021.107949

    Article  Google Scholar 

Download references

Funding

The work by S.N. Mikhailenko was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. I. Velichko or S. N. Mikhailenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, T.I., Mikhailenko, S.N. Calculation of the Frequencies of Vibration-Rotation Transitions of the H36Cl Molecule. Atmos Ocean Opt 35, 626–633 (2022). https://doi.org/10.1134/S1024856022060264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022060264

Keywords:

Navigation