Skip to main content
Log in

Initial stage of breakdown of a point-plane gap filled with high-pressure nitrogen and SF6

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The initial stage of breakdown of sulfur hexafluoride (SF6) and nitrogen in a nonuniform electric field at high pressures is studied. High voltage pulses with amplitudes of up to 350 kV have been applied across the discharge gap with the “point-plane” geometry of the electrodes. Experimental results on the dynamics of light emission from different zones of the discharge gap can be explained by generation of an ionization wave, which started from a potential electrode with a small radius of curvature. It is found that the speed of the ionization wave front in nitrogen and SF6 is higher in the second half of the discharge gap as compared to the first one. It is shown that the speed of ionization wave front decreases as SF6 and nitrogen pressure increases. The average speed of ionization wave front is shown to be ∼2 cm/ns in SF6 under a pressure of 0.25 MPa and ∼3.6 cm/ns in nitrogen under a pressure of 0.3 MPa under the negative polarity of high-voltage pulses when bridging a discharge gap of about 13 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Bazelyan and Yu. P. Raizer, Physics of Lightning and Lighting Protection (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  2. J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, E. Kozak, J. Jerauld, M. A. Uman, V. A. Rakov, D. M. Jordan, and K. J. Rambo, “X-ray bursts associated with leader steps in cloud-to-ground lightning,” Geophys. Rev. Lett. 32, L01803 (2005).

    ADS  Google Scholar 

  3. B. J. Hazelton, B. W. Grefenstette, D. M. Smith, J. R. Dwyer, X. M. Shao, S. A. Cummer, T. Chronis, E. H. Lay, and R. H. Holzworth, “The spectral dependence of terrestrial γ-ray flashes on source distance,” Geophys. Rev. Lett. 36, L01108 (2009).

    Article  ADS  Google Scholar 

  4. A. V. Gurevich, A. N. Karashtin, V. A. Ryabov, A. P. Chubenko, and A. L. Shchepetov, “Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges,” Phys.-Uspekhi 52(7), 735–745 (2009).

    Article  ADS  Google Scholar 

  5. Yu. P. Raizer, Gas Dischrage Physics (Izdat. Dom “Intellekt”, Dolgoprudnyi, 2009).

    Google Scholar 

  6. L. M. Vasilyak, S. P. Vetchinin, and D. N. Polyakov, “Effects of the rise rate of high-voltage nanosecond pulses on the breakdown of air gaps,” Tech. Phys. Lett. 25(9), 749–751 (1999).

    Article  ADS  Google Scholar 

  7. J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M. A. Uman, and V. A. Rakov, “A study of X-ray emission from laboratory sparks in air at atmospheric pressure,” J. Geophys. Res. 113, D23207 (2008).

    Article  ADS  Google Scholar 

  8. A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, D. V. Rybka, V. F. Tarasenko, and D. V. Shitts, “Radiation from a diffuse corona discharge in atmosphericpressure air,” Atmos. Ocean. Opt. 25(2), 176–184 (2012).

    Article  Google Scholar 

  9. E. V. Oreshkin, S. A. Barengol’ts, V. I. Oreshkin, and S. A. Chaikovskii, “Characteristic length and enhancement time of a runaway electron avalanche in strong electric fields,” Tech. Phys. Lett. 38(7), 604–608 (2012).

    Article  ADS  Google Scholar 

  10. V. F. Tarasenko, I. D. Kostyrya, and D. V. Rybka, “Nanosecond breakdown in atmospheric-pressure air due to runaway electrons,” Opt. Atmosf. Okeana 25(1), 103–108 (2012).

    Google Scholar 

  11. Shao Tao, V. F. Tarasenko, Zhang Chen, A. G. Burachenko, D. V. Rybka, I. D. Kostyrya, M. I. Lomaev, E. Kh. Baksht, and Yan. Ping, “Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field,” Rev. Sci. Instr. 84, 053506-1–053506-7 (2013).

    Article  ADS  Google Scholar 

  12. F. Ya. Zagulov, A. S. Kotov, V. G. Shpak, Ya. Ya. Yurike, and M. I. Yalandin, “RADAN-small high-current pulse-periodic electron accelerators,” Pribory Tekhn. Eksperim., No. 2, 146–149 (1989).

    Google Scholar 

  13. V. F. Tarasenko, E. K. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, “Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure,” Plasma Devices Oper. 16(4), 267–298 (2008).

    Article  Google Scholar 

  14. M. I. Lomaev, D. V. Rybka, D. A. Sorokin, V. F. Tarasenko, and K. Yu. Krivonogova, “Radiative characteristics of nitrogen upon excitation by volume discharge initiated by runaway electron beam,” Opt. Spectrosc. 107(1), 33–40 (2009).

    Article  ADS  Google Scholar 

  15. V. F. Tarasenko, E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and D. A. Sorokin, “Transition of a diffuse discharge to a spark at nanosecond breakdown of high-pressure nitrogen and air in a nonuniform electric field,” Tech. Phys. 83(8) 1115–1121 (2013).

    Article  Google Scholar 

  16. D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms,” Atmos. Ocean. Opt. 26(5), 449–454 (2013).

    Article  Google Scholar 

  17. P. O. Vil’tovskii, M. I. Lomaev, A. N. Panchenko, N. A. Panchenko, D. V. Rybka, and V. F. Tarasenko, “Lasing in the UV, IR and visible spectral ranges in a runaway-electron-preionised diffuse dischrage,” Qunatum Electron. 43(7), 605–609 (2013).

    Article  ADS  Google Scholar 

  18. E. Myuller, “Field ion microscopy,” Usp. Fiz. Nauk 92(2), 293–320 (1967).

    Google Scholar 

  19. A. V. Kozyrev, V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, “Soft X-ray generation and its role in breakdown of air gap at elevated pressures,” Tech. Phys. Lett. 37(11), 1054–1057 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Beloplotov.

Additional information

Original Russian Text © D.V. Beloplotov, M.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. et al. Initial stage of breakdown of a point-plane gap filled with high-pressure nitrogen and SF6 . Atmos Ocean Opt 27, 324–328 (2014). https://doi.org/10.1134/S1024856014040022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014040022

Keywords

Navigation