Skip to main content
Log in

Si@SiOx/CNF Flexible Anode Prepared by Electrospinning for Li-Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Si@SiOx/CNF flexible composite films were prepared by electrospinning, oxidation stabilization and high-temperature pyrolysis. The composites’ physical properties and electrochemical performances were characterized in detail to clarify their structure, actual composition, and the influence of silicon on the capacity utilization rate and stability of the anode composites. The results show that the Si@SiOx particles are formed in oxidation process and embedded into the carbon fiber matrix to form a three-dimensional network structure. With the increase of nano-silicon content, the agglomeration of nano-silicon particles inside and on the surface of the fiber intensifies, and the specific capacity of the composite increases first and then decreases. When the content of nano-silicon is about 34.87 wt %, the theoretical specific capacity utilization rate of the composite is about 67.71%. Moreover, the three-dimensional flexible composite has a higher discharge specific capacity 1085 mA h/g after 100 cycles at 0.1 A/g and better cyclic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., and Yushin, G., High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 2010, vol. 9, p. 353.

    Article  CAS  PubMed  Google Scholar 

  2. Jing, S.L., Jiang, H., Hu, Y.J., Shen, J.H., and Li, C.Z., Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life, Adv. Funct. Mater., 2015, vol. 25, p. 5395.

    Article  CAS  Google Scholar 

  3. Xu, Z.L., Liu, X.M., Luo, Y.S., Zhou, L.M., and Kim, J.K., Nanosilicon anodes for high performance rechargeable batteries, Prog. Mater. Sci., 2017, vol. 90, p. 1.

    Article  Google Scholar 

  4. Li, W.Q., Wang, Q., Cao, K., Tang, J.G., Wang, H.T., and Zhou, L.M., Mechanics-based optimization of yolk-shell carbon-coated silicon nanoparticle as electrode materials for high-capacity lithium ion battery, Compos. Commun., 2016, vol. 1, p. 1.

    Article  Google Scholar 

  5. Peled, E., Patolsky, F., Golodnitsky, D., Freedman, K., Davidi, G., and Schneier, D., Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries, Nano. Lett., 2015, vol. 15, p. 3907.

    Article  CAS  PubMed  Google Scholar 

  6. Li, S., Liu, Y.M., Zhang, Y.C., Song, Y., Wang, G.K., Liu, Y.X., Wu, Z.G., Zhong, B.H., Zhong, Y.J., and Guo, X.D., A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries, J. Power Sources, 2021, vol. 485, article # 229331.

  7. Shi, Q.T., Zhou, J.H., Ullah, S., Yang, X.Q., Tokarska, K., Trzebicka, B., Ta, H.Q., and Rümmeli, M.H., A review of recent developments in Si/C composite materials for Li-ion batteries, Energy Storage Mater., 2021, vol. 34, p. 735.

    Article  Google Scholar 

  8. Goriparti, S., Miele, E., Angelis, F.D., Fabrizio, E.D., Zaccaria, R.P., and Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 2014, vol. 257, p. 421.

    Article  CAS  Google Scholar 

  9. Szczech, J.R. and Jin, S., Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 2011, vol. 4, p. 56.

    Article  CAS  Google Scholar 

  10. Dou, F., Shi, L.Y., Song, P.A., Chen, G.R., An, J., Liu, H.J., and Zhang, D.S., Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery, Chem. Eng. J., 2018, vol. 338, p. 488.

    Article  CAS  Google Scholar 

  11. Shin, J., Kim, T.H., Lee, Y.J., and Cho, E.A., Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries, Energy Storage Mater., 2020, vol. 25, p. 764.

    Article  Google Scholar 

  12. Miyachi, M., Yamamoto, H., Kawai, H., Ohta, T., and Shirakata, M., Analysis of SiO anodes for lithium-ion batteries, J. Electrochem. Soc., 2005, vol. 152, p. A2089.

    Article  CAS  Google Scholar 

  13. Liu, W.R., Yen, Y.C., Wu, H.C., Winter, M., and Wu, N.L., Nano-porous SiO/carbon composite anode for lithium-ion batteries, J. Appl. Electrochem., 2009, vol. 39, p. 1643.

    Article  CAS  Google Scholar 

  14. Zhang, H.L., Xu, J.Q., and Zhang, J.J., Preparation and electrochemical properties of core-shelled silicon-carbon composites as anode materials for lithium-ion batteries, J. Appl. Electrochem., 2019, vol. 49, p. 1123.

    Article  CAS  Google Scholar 

  15. Hou, G.L., Cheng, B.L., Cao, Y.B., Yao, M.S., Li, B.Q., Zhang, C., Weng, Q.H., Wang, L., Bando, Y., Golberg, D., and Yuan, F.L., Scalable production of 3D plum-pudding-like Si/C spheres towards practical application in Li-ion batteries, Nano Energy, 2016, vol. 24, p. 111.

    Article  CAS  Google Scholar 

  16. Yun, Q.B., Qin, X.Y., Lv, W., He, Y.B., Kang, F.Y., and Yang, Q.H., “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery, Carbon, 2015, vol. 93, p. 59.

    Article  CAS  Google Scholar 

  17. Dou, F., Shi, L.Y., Chen, G.R., and Zhang, D.S., Silicon/carbon composite anode materials for lithium-ion batteries, Electrochem. Energ. Rev., 2019, pp. 149–198.

  18. Zhang, M., Zhang, T.F., Ma, Y.F., and Chen, Y.S., Latest development of nanostructured Si/C materials for lithium anode studies and applications, Energy Storage Mater., 2016, vol. 4, p. 1.

    Article  CAS  Google Scholar 

  19. Chang, J.B., Huang, X.K., Zhou, G.H., Cui, G.H., Hallac, P.B., Jiang, J.W., Hurley, P.T., and Chen, J.H., Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode, Adv. Mater., 2014, vol. 26, p. 758.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, H., Seo, M., Park, M.H., and Cho, J., A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed., 2010, vol. 49, p. 2146.

    Article  CAS  Google Scholar 

  21. Yang, L.Y., Li, H.Z., Liu, J., Sun, Z.Q., Tang, S.S., and Lei, M., Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 2015, vol. 5, p. 10908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, C.K., Peng, H., Liu, G., Mcllwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, vol. 3, p. 31.

    Article  CAS  PubMed  Google Scholar 

  23. Wen, Z.H., Lu, G.H., Mao, S., Kim, H., Cui, S.M., Yu, K.H., Huang, X.K., Hurley, P.T., Mao, O., and Chen, J.H., Silicon nanotube anode for lithium-ion batteries, Electrochem. Commun., 2013, vol. 29, p. 67.

    Article  CAS  Google Scholar 

  24. Maranchi, J.P., Hepp, A.F., and Kumta, P.N., High capacity reversible silicon thin-film anodes for lithium-ion batteries, Electrochem. Solid-State Lett., 2003, vol. 6, no. 9, p. A198.

    Article  CAS  Google Scholar 

  25. Demirkan, M.T., Trahey, L., and Karabacak, T., Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sources, 2015, vol. 273, p. 52.

    Article  CAS  Google Scholar 

  26. Hwang, G., Park, H., Bok, T., Choi, S., Lee, S., Hwang, I., Choi, N.S., Seo, K., and Park, S., High-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation, Chem. Commun., 2015, vol. 51, p. 4429.

    Article  CAS  Google Scholar 

  27. Song, J.X., Chen, S.R., Zhou, M.J., Xu, T., Lv, D.P., Gordin, M.L., Long, T.J., Melnyk, M., and Wang, D.H., Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries, J. Mater. Chem., 2014, vol. A2, p. 1257.

    Article  Google Scholar 

  28. Bae, J., Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery, J. Solid State Chem., 2011, vol. 184, p. 1749.

    Article  CAS  Google Scholar 

  29. Cui, L.F., Yang, Y., Hsu, C.M., and Cui, Y., Carbon-silicon core–shell nanowires as high capacity electrode for lithium ion batteries, Nano. Lett., 2009, vol. 9, no. 9, p. 3370.

    Article  CAS  PubMed  Google Scholar 

  30. Ji, L.W. and Zhang, X.W., Electrospun carbon nanofibers containing silicon particles as an energy-storage medium, Carbon, 2009, vol. 47, no. 14, p. 3219.

    Article  CAS  Google Scholar 

  31. Xu, Y., Yuan, T., Bian, Z.H., Sun, H., Pang, Y.P., Peng, C.X., Yang, J.H., and Zheng, S.Y., Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery, Compos. Commun., 2019, vol. 11, p. 1.

    Article  Google Scholar 

  32. Kong, J.H., Yee, W.A., Wei, Y.F., Yang, L.P., Ang, J.M., Phua, S.L., Wong, S.Y., Zhou, R., Dong, Y.L., Li, X., and Lu, X.H., Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes, Nanoscale, 2013, vol. 5, no. 7, p. 2967.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, J., Xu, W., Wang, D.Y., Choi, D., Wang, W., Li, X.L., Graff, G.L., Liu, J., and Zhang, J.G., Stabilization of silicon anode for Li-ion batteries, J. Electrochem. Soc., 2010, vol. 157, no. 10, p. A1047.

    Article  CAS  Google Scholar 

  34. Kim, S.J., Kim, M.C., Han, S.B., Lee, G.H., Choe, H.S., Moon, S.H., Kwak, D.H., Hong, S., and Park, K.W., 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries, J. Ind. Eng. Chem., 2017, vol. 49, p. 105.

    Article  CAS  Google Scholar 

  35. Qu, E., Chen, T., Xiao, Q.Z., Lei, G.T., and Li, Z.H., Flexible freestanding 3D Si/C composite nanofiber film fabricated using the electrospinning technique for lithium-ion batteries anode, Solid State Ionics, 2019, vol. 337, p. 70.

    Article  CAS  Google Scholar 

  36. Eom, J.Y., Park, J.W., Kwon, H.S., and Rajendram, S., Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling, J. Electrochem. Soc., 2006, vol. 153, no. 9, p. A1678.

    Article  CAS  Google Scholar 

  37. Nanda, J., Datta, M.K., Remillard, J.T., O’neill, A., and Kumta, P.N., In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode, Electrochem. Commun., 2009, vol. 11, no. 1, p. 235.

    Article  CAS  Google Scholar 

  38. Ivanishchev, A.V., Gridina, N.A., Rybakov, K.S., Ivanishcheva, I.A., and Dixit, A., Structural and electrochemical investigation of lithium ions insertion processes in polyanionic compounds of lithium and transition metals, J. Electroanal. Chem., 2020, vol. 860, p. 113894.

    Article  CAS  Google Scholar 

  39. Ivanishchev, A.V. and Ivanishcheva, I.A., Ion transport in lithium electrochemical systems: problems and solutions, Russ. J. Electrochem., 2020, vol. 56, p. 907.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Project of Hubei Provincial Department of Education (B2019146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiage Yu or Feng Wang.

Ethics declarations

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian Zhang, Tao, J., Yu, J. et al. Si@SiOx/CNF Flexible Anode Prepared by Electrospinning for Li-Ion Batteries. Russ J Electrochem 59, 430–440 (2023). https://doi.org/10.1134/S1023193523050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523050051

Keywords:

Navigation