Skip to main content
Log in

Electrocatalytic Properties of Iron Ferrite (Fe3O4) Obtained by Thermal Decomposition Method Using Egg White (Ovalbumin)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nano-sized spinel oxide iron ferrite (Fe3O4) was obtained by thermal decomposition method using egg white (ovalbumin) at 500°C and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV, impedance, and Tafel polarization) techniques. The characteristic vibration bands in FTIR (449–590 cm–1) and XRD powder patterns of decomposed oxide showed the formation of nano-sized (~28 nm) spinel-type oxide. The electrocatalytic performance of iron ferrite was investigated by CV, impedance, and Tafel polarization techniques. Fabricated GC/Fe3O4-electrode showed sluggish kinetic behaviour towards oxygen evolution reaction (OER) in 1 M KOH solution. Tafel slopes for OER at lower and higher overpotential regions were observed at 93–140 mV decade–1, and thermodynamic parameters such as activation energy (Ea) and electrochemical entropy of reaction were estimated from the Arrhenius plot, and it was found to be ~23 KJ mol–1 deg–1 and –204 J mol–1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Trasatti, S. and Lodi, G., Electrodes of Conductive Metallic Oxides, Trasatti, S., Ed., Amsterdam: Elsevier, 1981, part B.

  2. Rajaram, R.R. and Sermon, P.A., Adsorption and catalytic properties of CoxFe3 – xO4 spinels. Part 1. Preparation and characterisation of precursors to ammonia-synthesis catalysts, J. Chem. Soc. Faraday Trans.1: Phys. Chem. Condens. Phases, 1985, vol. 81, no. 11, p. 2577.

    CAS  Google Scholar 

  3. Costa, H.M., Katan, T., Chin, M., and Schoeneweis, J.F., Decomposition of dilute hydrogen peroxide in alkaline solutions, Nature, 1964, vol. 203, p. 1281.

    Article  Google Scholar 

  4. Dadfar, S.M., Drude, K.N., Stillfried, S.V., Knuchel, R., Kiessling, F., and Lammers, T., Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications, Adv. Drug Delivery Rev., 2019, vol. 138, p. 302.

    Article  CAS  Google Scholar 

  5. Pelini, M.P., Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater., 2001, vol. 5, p. 323.

    Article  Google Scholar 

  6. Cheng, F.Y., Su, C.H., Yang, Y., Yeh, S.C., Tsa, C.Y., and Wu, C.L., Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications, Biomaterial, 2005, vol. 26, p. 729.

    Article  CAS  Google Scholar 

  7. Song, Q. and Zhang, Z.J., Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Soc., 2004, vol. 126, no. 126, p. 6164.

    Article  CAS  Google Scholar 

  8. Goldman, A., Modern Ferrite Technology, New York: Springer, 2006.

    Google Scholar 

  9. Niasari, M.S., Davar, F., and Mahamoudi, T., A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as surfactant, Polyhedron, 2009, vol. 103, p. 1455.

    Article  Google Scholar 

  10. McMichael, R.D., Shull, R.D., Swartzendruber, L.J., Bennett, L.H., and Watson, R.E., J. Magn. Magn. Mater., 1992, vol. 111, p. 29.

    Article  CAS  Google Scholar 

  11. Krishnaveni, T., Rajinikanth, B.V., Raju, S.R., and Murthy, S.R., J. Alloys Compd., 2006, vol. 414, nos. 1–2, p. 282.

    Article  CAS  Google Scholar 

  12. Kim, Y.I., Kim, D., and Lee, C.S., Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method, Phys. B: Condens. Matter, 2003, vol. 337, nos. 1–4, p. 42.

    Article  CAS  Google Scholar 

  13. Shafi, K.V.P.M., Gediankem, A., and Prozorov, R., Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles, Chem. Matter, 1998, vol. 10, no. 11, p. 3445.

    Article  CAS  Google Scholar 

  14. Bockris, J.O.M. and Otagawa, T., Mechanism of oxygen evolution on perovskites, J. Phys. Chem., 1983, vol. 87, no. 15, p. 2960.

    Article  CAS  Google Scholar 

  15. Svegl, F., Orel, B., Svegl, I.G., and Kaucic, V., Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route, Electrochim. Acta, 2000, vol. 45, no. 25-26, p. 4359.

    Article  CAS  Google Scholar 

  16. Prasad, S. and Gajbhiye, N.S., Magnetic properties of interacting single domain Fe3O4 particles, J. Alloys Compd., 2001, vol. 326, nos. 1–2, p. 50.

    Article  Google Scholar 

  17. Ahn, Y., Choi, E.J., Kim, S., and Ok, H.N., Magnetization and Mössbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate, Mater. Lett., 2001, vol. 50, no. 1, p. 47.

    Article  CAS  Google Scholar 

  18. Lal, B. and Rastogi, P.K., Microwave-assisted synthesis of chromium substituted nickel ferrite spinel for oxygen evolution reaction, Orbital: Electron. J. Chem., 2020, vol. 12, no. 3, p. 154.

    Google Scholar 

  19. Chau, J.L.H., Hsu, M.K., and Kao, C.C., Microwave plasma synthesis of Co and SiC-coated Co nanopowders, Matter. Lett., 2006, vol. 60, no. 7, p. 947.

    Article  CAS  Google Scholar 

  20. Senthil, S.M., Jayaprakash, R., Singh, V.N., Mehta, B.R., and Govindaraj, G., Effect of annealing on dielectric property in Ni1 – xCoxFe2O4 nanoparticles synthesized using Albumen (egg white), J. Nano Res., 2008, vol. 4, no. 6, p. 107.

    CAS  Google Scholar 

  21. Mine, Y., Recent advances in the understanding of egg white protein functionality, Trends Food Sci. Technol., 1995, vol. 6, no. 7, p. 225.

    Article  CAS  Google Scholar 

  22. Al Angari, Y.M., Electro-magnetic properties of nano-crystalline Mn–Zn ferrite synthesized from spent Zn‒C battery via Egg-white route, Int. J. Electrochem. Sci., 2018, vol. 13, p. 12331.

    Article  CAS  Google Scholar 

  23. Singh, R.N., Singh, J.P., Lal, B., Thomas, M.J.K., and Bera, S., New NiFe2 − xCrxO4 spinel films for O2 evolution in alkaline solutions, Electrochim. Acta, 2006, vol. 51, no. 25, p. 5515.

    Article  CAS  Google Scholar 

  24. Lal, B., Singh, N.K., Samuel, S., and Singh, R.N., Electrocatalytic properties of CuxCo3 – xO4 (0 ≤ x ≤ 1) obtained by a new precipitation method for oxygen evolution, J. New. Mat. Electrochem. Syst., 1999, vol. 2, no. 1, p. 59.

    CAS  Google Scholar 

  25. Li, P., Ma, R., Zhau, Y., Chen, Y., Liu, Q., Peng, G., Liang, Z., and Wang, J., Spinel nickel ferrite nanoparticles strongly cross-linked with multiwalled carbon nanotubes as a bi-efficient electrocatalyst for oxygen reduction and oxygen evolution, RSC Adv., 2015, vol. 5, p. 73834.

    Article  CAS  Google Scholar 

  26. Reddy, M.P., Madhuri, W., Sadhana, K., Kim, I.G., Hui, K.N., Shiv Kumar, K.V., and Reddy, R.R., Microwave sintering of nickel ferrite nanoparticles processed via the sol–gel method, J. Sol-Gel Sci. Technol., 2014, vol. 70, no. 3, p. 400.

    Article  Google Scholar 

  27. Al-Hoshan, M.S., Singh, J.P., Al-Mayouf, A.M., Al-Suhybani, A.A., and Shaddad, M.N., Synthesis, physicochemical and electrochemical properties of nickel ferrite spinels obtained by hydrothermal method for the oxygen evolution reaction (OER), Int. J. Electrochem. Sci., 2012, vol. 7, p. 4959.

    CAS  Google Scholar 

  28. Lal, B., Elctrocatalytic oxygen evolution reaction on Mg, Al and Fe doped spinel oxides, Ind. J. Chem. A, 2021, vol. 60, no. 10, p. 1303.

    Google Scholar 

  29. Levin, S. and Smith, A.L., Theory of the differential capacity of the oxide/aqueous electrolyte interface, Faraday Discuss. Chem. Soc., 1971, vol. 52, p. 290.

    Article  Google Scholar 

  30. Iwakura, C., Nishioka, M., and Tamura, H., Nippon Kagaku Kaishi, 1982, vol. 7, p. 136; Iwakura, C., Nishioka, M., and Tamura, H., Denki Kagaku, 1981, vol. 49, p. 535.

    CAS  Google Scholar 

  31. Singh, N.K. and Singh, R.N., Electrocatalytic properties of spinel type NixFe3 – xO4 synthesized at low temperature for oxygen evolution in KOH solutions, Ind. J. Chem. A, 1999, vol. 38, no. 5, p. 491.

    Google Scholar 

  32. Protsenko, V.S. and Danilov, F.I., Activation energy of electrochemical reaction measured at a constant value of electrode potential, J. Electroanal. Chem., 2011, vol. 651, p. 105.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors like to express their sincere thanks to Prof. A.K. Tiwari, Babasaheb Bhimrao Ambedkar University, Lucknow for SEM analysis. MM, and AS thankfully acknowledge the Department of Chemistry, IIT (BHU) Varanasi, for providing an XRD facility. AS is thankful to the Ministry of Human Resource Development (MHRD), New Delhi for providing funding for research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Lal or M. Malviya.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, P., Lal, B., Malviya, M. et al. Electrocatalytic Properties of Iron Ferrite (Fe3O4) Obtained by Thermal Decomposition Method Using Egg White (Ovalbumin). Russ J Electrochem 59, 313–319 (2023). https://doi.org/10.1134/S1023193523040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523040043

Keywords:

Navigation