Skip to main content
Log in

Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approach

Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A recently proposed method using constant current steps were applied for a period of time on a reticulated vitreous carbon cathode. The current steps were calculated from a theoretical analysis of the metal concentration profile assuming that the metal was deposited under mass transport control. A model was developed to predict the concentration decay of metal ions during the process. The current required to reduce the metal at the mass transfer limit at each time step was predicted from the concentration decay obtained from the model. This process should enable one to maintain high metal recovery rates whilst maximizing current efficiency. This concept was tested on Cu(II) deposition from an acidified sulfate electrolyte using a flowby reactor system with a reticulated vitreous carbon electrode. The model was good for predicting copper metal removal using a three dimensional cathode in dilute rinse waters. Also, the predicted current efficiency was in good agreement with that obtained using the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Dutra, A.J.B., Rocha, G.P., and Pombo, F.R., J. Haz. Mater., 2008, vol. 152, p. 648.

    Article  CAS  Google Scholar 

  2. Mandich, N., Metal. Finishing., 2005, vol. 103, p. 29.

    Article  CAS  Google Scholar 

  3. Healy, J.P. and Pletcher, D., J. Electroanal. Chem., 1992, vol. 338, p. 155.

    Article  CAS  Google Scholar 

  4. Giannopoulou. I., Panias, D., and Paspaliaris, I., Hydrometallurgy., 2009, vol. 99, p. 58.

    Article  CAS  Google Scholar 

  5. Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., and Böni, H., Environ. Impact Assessment Review, 2005, vol. 25, p. 436.

    Article  Google Scholar 

  6. Xiao, F., Jun-song, G., and Zu-cheng, W., J. Zhejiang. Univ. Sci. A, 2008, vol. 9, p. 1283.

    Article  Google Scholar 

  7. Gov,UK (2012) http://wwwenvironment-agencygovulc/ business/topics/waste/32196aspx. Accessed 17 October 2012

  8. The European Commission (2012) http://wwwreachreadycouk/News_freephp. Accessed 17 October 2012

  9. Scott, K., Chen, X., Atkinson, J.W., Todd, M., and Armstrong, R.D., Resources, Conservation and Recycling, 1997, vol. 20, p. 43.

    Article  Google Scholar 

  10. Kerr, C., Trans. Inst. Metal. Finishing, 2004, vol. 82, p. B7.

    CAS  Google Scholar 

  11. Buckle, R. and Roy, S., Sep. Purif. Technol., 2008, vol. 62, p. 86.

    Article  CAS  Google Scholar 

  12. Pletcher, D. and Poorabedi, Z., Electrochim. Acta, 1979, vol. 24, p. 125.

    Article  Google Scholar 

  13. Carpenter, N. and Pletcher, D., Analytica. Chim. Acta, 1995, vol. 317, p. 287.

    Article  CAS  Google Scholar 

  14. Roy, S. and Buckle, R., Sep. Purif. Technol., 2009, vol. 68, p. 185.

    Article  CAS  Google Scholar 

  15. Das, S.C. and Gopala-Krishna, P., Int. J. Miner. Process., 1996, vol. 46, p. 91.

    Article  CAS  Google Scholar 

  16. Hatfield, T.L. and Pierce, D.T., J. Appl. Electrochem., 1998, vol. 28, p. 397.

    Article  CAS  Google Scholar 

  17. Yap, C.Y. and Mohamed, N., Chemosphere., 2008, vol. 73, p. 685.

    Article  CAS  Google Scholar 

  18. Reyes-Cruz, V., Gonzalez, I., and Oropeza, M.T., Electrochim. Acta, 2004, vol. 49, p. 4417.

    Article  CAS  Google Scholar 

  19. Walsh, F.C. and Gabe, D.R., Surf. Technol., 1981, vol. 12, p. 25.

    Article  CAS  Google Scholar 

  20. Pletcher, D., Whyte, I., Walsh, F.C., and Millington, J.P., J. Appl Electrochem., 1991, vol. 21, p. 659.

    Article  CAS  Google Scholar 

  21. Walsh, F.C. and Reade, G.W., Stud. Environ. Sci., 1994, vol. 59, p. 3.

    Article  CAS  Google Scholar 

  22. Walker, A.T. and Wragg, A.A., Electrochim. Acta, 1977, vol. 22, p. 1129.

    Article  CAS  Google Scholar 

  23. Robinson, D. and Walsh, F.C., Hydrometallurgy, 1991, vol. 26, p. 93.

    Article  CAS  Google Scholar 

  24. Robinson, D. and Walsh, F.C., Hydrometallurgy, 1991, vol. 26, p. 115.

    Article  CAS  Google Scholar 

  25. Robinson, D. and Walsh, F.C., Hydrometallurgy, 1991, vol. 26, p. 367.

    Google Scholar 

  26. Gayar, D.A., El-Shazly, E.H., El-Taweel, Y.A., and Sedahmed, G.H., Chem. Eng. J., 2010, vol. 162, p. 877.

    Article  Google Scholar 

  27. Los, P., Lukomska, A., Kowalska, S., and Kwartnik, M., J. Electrochem. Soc., 2014, vol. 161, p. D593.

  28. Xiu-lian, R., Qi-feng, W., Zhe, L., and Jun, L., Trans. Nonferrous. Met. Soc. China, 2012, vol. 22, p. 467.

    Article  Google Scholar 

  29. Coman, V., Robotin, B., and Ilea, P., Resources, Conservation and Recycling., 2013, vol. 73, p. 229.

    Article  Google Scholar 

  30. Abda, M. and Ore, Y., Water. Res., 1993, vol. 27, p. 1535.

    Article  CAS  Google Scholar 

  31. Segundo, J.E.D.V., Salazar-Banda, G.R., Feitoza, A.C.O., Vilar, E.O., and Cavalcanti, E.B., Sep. Purif. Technol., 2012, vol. 88, p. 107.

    Article  CAS  Google Scholar 

  32. Estrine, E.C., Riemer, S., Venkatasamy, V., Stadler, B.J.H., and Tabakovic, I., J. Electrochem. Soc., 2014, vol. 161, p. D687.

  33. Vasudevan, S. and Oturan, M.A., Environ. Chem. Lett., 2014, vol. 12, p. 97.

    Article  CAS  Google Scholar 

  34. Walsh, F. and Reade, G., Analyst., 1994, vol. 119, p. 791.

    Article  CAS  Google Scholar 

  35. Walsh, F. and Reade, G., Analyst., 1994, vol. 119, p. 797.

    Article  CAS  Google Scholar 

  36. Derek, P., J. Electroanal. Chem., 1987, vol. 218, p. 371.

    Article  Google Scholar 

  37. Meccucci, A. and Scott, K., J. Chem. Technol. Biotechnol., 2002, vol. 77, p. 449.

    Article  Google Scholar 

  38. Silva-Martinez, S. and Roy, S., Sep. Purif. Technol., 2013, vol. 118, p. 6.

    Article  CAS  Google Scholar 

  39. Walsh, F.C., A First Course in Electrochemical Engineering, The Electrochemical Consultancy, Romsey, UK, 1993.

    Google Scholar 

  40. Laufer, J., Zhang, E., and Beard, P., IEEE. J. Sel. Top. Quant., 2010, vol. 16, p. 600.

    Article  CAS  Google Scholar 

  41. Sobri, S., Electrocrystallisation and recovery of gold from thiosulphate-sulphite aged electrolyte, Dissertation, University of Newcastle, 2006.

    Google Scholar 

  42. Barbosa, L.A.D., Sobral, L.G.S., and Dutra, A.J.B., Miner. Eng., 2001, vol. 14, p. 963.

    Article  CAS  Google Scholar 

  43. Bertazzoli, R., Widner, R.C., Lanza, M.R.V., Di-Iglia, R.A., and Sousa, M.F.B., J. Braz. Chem. Soc., 1997, vol. 8, p. 487.

    Article  CAS  Google Scholar 

  44. Pletcher, D., Whyte, I., Walsh, F.C., and Millington, J.P., J. Appl. Electrochem., 1991, vol. 21, p. 667.

    Article  CAS  Google Scholar 

  45. Reade, G.W., Nahle, A.H., Bond, P., Friedrich, J.M., and Walsh, F.C., J. Chem. Tech. Biotech., 2004, vol. 79, p. 935.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Silva-Martínez or S. Roy.

Additional information

Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 1, pp. 82–89.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Martínez, S., Roy, S. Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approach. Russ J Electrochem 52, 71–77 (2016). https://doi.org/10.1134/S1023193516010092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516010092

Keywords

Navigation