Skip to main content
Log in

The effect of demographic population factors and individual biological parameters on the rate of the neutral molecular evolution

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The dependence of the rate of neutral molecular evolution on both biological parameters and demographic population factors has been investigated. Real genetic data and an individual-based model of the population dynamics were used for the study. The first part of the study deals with tracing the neutral molecular evolution occurring in the model concurrently with adaptive speciation. The second part concerns the effect of individual biological parameters and demographic population factors of members of the Order Testudines (Turtles) on the relative rate of evolution of the mitochondrial CytB gene. It has been shown that demographic population factors and individual biological parameters affect the rate of the neutral molecular evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zuckerkandl, E. and Pauling, L., Molecules as Documents of Evolutionary History, J. Theor. Biol., 1965, vol. 8, pp. 357–366.

    Article  PubMed  CAS  Google Scholar 

  2. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge Univ. Press, 1983.

  3. Barraclough, T.G. and Nee, S., Phylogenetics and Speciation, Trends Ecol. Evol., 2001, vol. 16, pp. 391–399.

    Article  PubMed  Google Scholar 

  4. Emerson, B.C., Paradis, E., and Thebaud, C., Revealing the Demographic Histories of Species Using DNA Sequences, Trends Ecol. Evol., 2001, vol. 16, pp. 707–716.

    Article  Google Scholar 

  5. Martin, A.P. and Palumbi, R.S., Body Size, Metabolic Rate, Generation Time, and Molecular Clock, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 4087–4091.

    Article  PubMed  CAS  Google Scholar 

  6. Martin, A.P. and Palumbi, S.R., Protein Evolution in Different Cellular Environments: Cytochrome B in Sharks and Mammals, Mol. Biol. Evol., 1993, vol. 10, pp. 873–891.

    PubMed  CAS  Google Scholar 

  7. Adachi, J. and Hasegawa, M., Tempo and Mode of Synonymous Substitutions in Mitochondrial DNA of Primates, Mol. Biol. Evol., 1996, vol. 13, pp. 200–208.

    PubMed  CAS  Google Scholar 

  8. Castro, L.R., Austin, A.D., and Dowton, M., Contrasting Rates of Mitochondrial Molecular Evolution in Parasitic Diptera and Hymenoptera, Mol. Biol. Evol., 2002, vol. 19, pp. 1100–1113.

    PubMed  CAS  Google Scholar 

  9. Bromham, L., Molecular Clocks in Reptiles: Life History Influences Rate of Molecular Evolution, Mol. Biol. Evol., 2002, vol. 19, pp. 302–309.

    PubMed  CAS  Google Scholar 

  10. Britten, R.J., Rates of DNA Sequence Evolution Differ Between Taxonomic Groups, Science, 1986, vol. 231, pp. 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  11. Kohne, D.E., Evolution of Higher Organism DNA, Quart. Rev. Biophys., 1970, vol. 3, pp. 327–375.

    Article  CAS  Google Scholar 

  12. Ohta, T., Population Size and Rate of Evolution, J. Mol. Evol., 1972, vol. 1, pp. 305–314.

    Article  Google Scholar 

  13. Semovski, S.V., Bukin, Yu.S., and Sherbakov, D.Yu., Speciation and Neutral Molecular Evolution in One-Dimensional Closed Population, Int. J. Modern Physics. C, 2003, vol. 14, pp. 973–984.

    Article  CAS  Google Scholar 

  14. Semovski, S.V., Verheyen, E., and Sherbakov, D.Yu., Simulating the Evolution of Neutrally Evolving Sequences in a Population under Environmental Changes, Ecol. Model., 2004, vol. 176, pp. 99–107.

    Article  CAS  Google Scholar 

  15. Dieckmann, U. and Doebelli, M., On the Origin of Species by Sympatric Speciation, Nature, 1999, vol. 400, pp. 354–357.

    Article  PubMed  CAS  Google Scholar 

  16. Takimoto, G., Higashi, M., and Yamamura, N.A., Deterministic Genetic Model for Sympatric Speciation by Sexual Selection, Evolution, 2000, vol. 54, pp. 1870–1881.

    PubMed  CAS  Google Scholar 

  17. Takezaki, N., Rzhetsky, A., and Nei, M., Phylogenetic Test of the Molecular Clock and Linearized Trees, Mol. Biol. Evol., 1995, vol. 12, pp. 823–833.

    PubMed  CAS  Google Scholar 

  18. Doebeli, M. and Dieckmann, U., Speciation Along Environmental Gradients, Nature, 2003, vol. 421, pp. 259–264.

    Article  PubMed  CAS  Google Scholar 

  19. Penna, T.J.P., A Very Simple Model of Biological Aging, J. Stat. Phys., 1995, vol. 78, pp. 1629–1631.

    Article  Google Scholar 

  20. Gavrilets, S., Li, H., and Vose, M.D., Patterns of Parapatric Speciation, Evolution, 2000, vol. 54, pp. 1126–1134.

    PubMed  CAS  Google Scholar 

  21. http://shanghai.bio.psu.edu/lintree.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Fazalova.

Additional information

Original Russian Text © V.P. Fazalova, S.V. Semovski, D.Yu. Sherbakov, G. Meunier, 2007, published in Genetika, 2007, Vol. 43, No. 9, pp. 1172–1180.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazalova, V., Semovski, S.V., Sherbakov, D.Y. et al. The effect of demographic population factors and individual biological parameters on the rate of the neutral molecular evolution. Russ J Genet 43, 973–980 (2007). https://doi.org/10.1134/S1022795407090025

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407090025

Keywords

Navigation