Skip to main content
Log in

Effect of the Molecular Mass of Hyaluronan on Its Thermophysical Properties and on Dynamic Viscosity of Its Aqueous Solutions

  • NATURAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The effect of the molecular mass of hyaluronans on the thermophysical and rheoviscometric properties of samples based on them has been studied. Differential scanning calorimetry revealed exothermic effects associated with the thermal degradation of these polysaccharides. The relationship between the area of the high-temperature degradation peak at 245–248°C and the molecular mass of polymeric hyaluronans has been determined, whereas this peak is absent for oligomeric hyaluronans with M < 6.6 × 103. A rheoviscometric study has shown that the flow of aqueous solutions of hyaluronans at low concentrations is close to Newtonian. The relationship between the viscosity of the solution and the molecular mass of polymeric hyaluronans (M > 50 × 103) has been established, and methods for rapid assessment of the hyaluronan molecular mass have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. Meyer and J. Palmer, J. Biol. Chem. 107, 629 (1934).

    Article  CAS  Google Scholar 

  2. V. G. Kadajji and G. V. Betageri, Polymers 3, 1972 (2011).

    Article  CAS  Google Scholar 

  3. T. Ito, N. Iida-Tanaka, and Y. Koyama, J. Drug Target. 16, 276 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Y.-H. Liao, S. A. Jones, B. Forbes, G. P. Martin, M. B. Brown, Drug Deliv. 12, 327 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. T. C. Laurent, Acta Otolaryngol. 442, 7 (1987).

    Article  CAS  Google Scholar 

  6. Q. Chen, Ch. Yin, J. Ma, J. Tu, Y. Shen, Pharmaceutics 11, 173 (2019).

    Article  Google Scholar 

  7. M. J. Rah, Optometry 82, 38 (2011).

    Article  PubMed  Google Scholar 

  8. L. Lapcik, Jr., L. Lapcik, S. de Smedt, J. Demeester, P. Chabrecek, Chem. Rev. 98 (8), 2663 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. M. K. Cowman, Adv. Carbohydr. Chem. Biochem. 74, 1 (2017).

    Article  PubMed  Google Scholar 

  10. P. Aragona, G. Di Stefano, F. Ferreri, R. Spinella, A. Stilo, Br. J. Ophthalmol. 86, 879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Nepp, J. Schauersberger, G. Schild, K. Jandrasits, J. Haslinger-Akramian, A. Derbolav, A. Wedrich, Biomaterials 22, 3305 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. M. F. Saettone, P. Chetoni, M. T. Torracca, S. Burgalassi, B. Giannaccini, Int. J. Pharm. 51, 203 (1989).

    Article  CAS  Google Scholar 

  13. J. Reeff, A. Gaignaux, J. Goole, C. De Vriese, K. Amighi, Drug Dev. Ind. Pharm. 39 (11), 1731 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. A. A. M. Shimojo, A. da Silva Santos Duarte, J. F. Santos Duarte Lana, A. C. M. Luzo, A. R. Fernandes, E. Sanchez-Lopez, E. Barbosa Souto, M. H. A. Santana, Polymers 11, 1568 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  15. A. A. M. Shimojo, A. M. B. Pires, R. Lichy, A. A. Rodrigues, M. H. A. Santana, J. Biomed. Mater. Res. A 103 (2), 730 (2015).

    Article  PubMed  Google Scholar 

  16. A. La Gatta, R. Salzillo, C. Catalano, A. D’Agostino, A. V. A. Pirozzi, M. de Rosa, Ch. Schiraldi, PLoS One 14 (6), e0218287 (2019).

  17. S. O. Ilyin, V. G. Kulichikhin, and A. Ya. Malkin, Rheol. Acta 55, 223 (2016).

    Article  CAS  Google Scholar 

  18. T. Kobayashi, Th. Chanmee, N. Itano, R. Stern, A. A. Asari, K. N. Sugahara, Biomolecules 10, 1525 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  19. R. Stern, A. A. Asari, and K. N. Sugahara, Eur. J. Cell Biol. 85, 699 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. GPC/SEC-MALLS Analysis of Hyaluronic Acid. https://www.chromatographyonline.com (Accessed March 1, 2019).

  21. S. de Oliveira, B. Campos da Silva, I. C. Riegel-Vidotti, A. Urbano, P. C. de Sousa Faria-Tischera, C. A. Tischer, Int. J. Biol. Macromol. 97, 642 (2017).

    Article  PubMed  Google Scholar 

  22. M. B. Caspersen, J. P. Roubroeks, L. Qun, H. Shan, J. Fogh, Zh. RuiDong, K. Tommeraas, Carbohydr. Polym. 107, 25 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. S. A. Barker and N. M. Young, Carbohydr. Res. 2, 366 (1966).

    Google Scholar 

  24. M. J. How and V. J. M. Long, Clin. Chim. Acta 23, 251 (1969).

    Article  CAS  PubMed  Google Scholar 

  25. J. C. Caygill, Biochim. Biophys. Acta 244, 421 (1971).

    Article  CAS  PubMed  Google Scholar 

  26. P. Chabreček, B. Šoltes, Z. Kállay, and I. Novak, Chromatographia 30, 201 (1990).

    Article  Google Scholar 

  27. N. B. Beaty and R. J. Mello, J. Chromatogr. 418, 187 (1987).

  28. N. Ueno, J. Sebag, H. Hirokawa, and B. Chakrabarti, Exp. Eye Res. 44, 863 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. E. Fouissac, M. Milas, M. Rinaudo, and R. Borsali, Macromolecules 25, 5613 (1992).

    Article  CAS  Google Scholar 

  30. K. Hayashi, K. Tsutsumi, T. Norisuye, and A. Teramaoto, Polym. J. 28, 922 (1996).

    Article  CAS  Google Scholar 

  31. E. Fouissac, M. Milas, and M. Rinaudo, Macromolecules 26, 6945 (1993).

    Article  CAS  Google Scholar 

  32. J. Schurz, H. Hemmetsberger, F. Sasshöfer, M. Tomiska, H. Tritthart, Chemistry 348, 711 (1967).

    CAS  Google Scholar 

  33. R. L. Cleland and J. L. Wang, Biopolymers 9, 799 (1970).

    Article  CAS  PubMed  Google Scholar 

  34. E. Shimada and G. Matsumura, J. Biochem. 78, 513 (1975).

    Article  CAS  PubMed  Google Scholar 

  35. R. L. Cleland and J. L. Wang, Biopolymers 9, 799 (1970).

    Article  CAS  PubMed  Google Scholar 

  36. A. Mracek, K. Benesova, A. Minarik, P. Urban, L. Lapcik, J. Biomed. Mater. Res. A 83 (1), 184.

  37. E. A. Balazs, M. K. Cowman, and S. O. Briller, Biopolymers 22, 589 (1983).

    Article  CAS  Google Scholar 

  38. H. G. Lee and M. K. Cowman, Anal. Biochem. 219, 78 (1994).

    Article  Google Scholar 

  39. H. Bothner, T. Waaler, and O. Wik, Int. J. Biol. Macromol. 10, 287 (1988).

    Article  CAS  Google Scholar 

  40. T. C. Laurent, M. Ryan, and A. Pietruszkiewicz, Biochim. Biophys. Acta 42, 476 (1960).

    Article  CAS  PubMed  Google Scholar 

  41. E. Fouissac, M. Milas, M. Rinaudo, and R. Borsali, Macromolecules 25, 5613 (1992).

    Article  CAS  Google Scholar 

  42. E. A. Balazs, The Amino Sugars: The Chemistry and Biology of Compounds Containing Amino Sugars, Ed. by E. A. Balazs and R. W. Jeanloz, (Academic, New York, 1965), p. 401.

    Google Scholar 

  43. E. Shimada and G. Matsumura, J. Biochem. 78, 513 (1975).

    Article  CAS  PubMed  Google Scholar 

  44. R. L. Cleland, Biopolymers 23, 647 (1984).

    Article  CAS  Google Scholar 

  45. R. E. Turner, P. Y. Lin, and M. K. Cowman, Arch. Biochem. Biophys. 265, 484 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. H. Bothner, T. Waaler, and O. Wik, Int. J. Biol. Macromol. 10, 287 (1988).

    Article  CAS  Google Scholar 

  47. R. Mendichi, L. Soltés, and A. Giacometti Schieroni, Biomacromolecules 4, 1805 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. S. Hokputsa, K. Jumel, C. Alexander, and S. E. Harding, Carbohydr. Polym. 52, 111 (2003).

    Article  CAS  Google Scholar 

  49. G. Ribitsch, J. Schurz, and V. Ribitsch, Colloid Polym. Sci. 258, 1322 (1980).

    Article  CAS  Google Scholar 

  50. A. G. Ogston and J. E. Stainer, Biochem. J. 46, 364 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. G. Ogston and J. E. Stainer, Biochem. J. 49, 585 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. G. Ogston and J. E. Stainer, Biochem. J. 52, 149 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. B. S. Blumberg and G. Oster, Science 120, 432 (1954).

    Article  CAS  PubMed  Google Scholar 

  54. C. E. Reed, X. Li, and W. F. Reed, Biopolymers 28, 1981 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. B. S. Blumberg, A. G. Ogston, D. A. Lowther, and H. J. Rogers, Biochem. J. 70, 1 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. R. L. Cleland, Biopolymers 6, 1519 (1968).

    Article  CAS  PubMed  Google Scholar 

  57. T. C. Laurent, M. Ryan, and A. Pietruszkiewicz, Biochim. Biophys. Acta 42, 476 (1960).

    Article  CAS  PubMed  Google Scholar 

  58. H.-M. Müller and D. A. Seebach, Chem. Int. Ed. Engl. 32, 477 (1993).

    Article  Google Scholar 

  59. S. Ghosh, X. Li, C. E. Reed, and W. F. Reed, Biopolymers 30, 1101 (1990).

    Article  CAS  Google Scholar 

  60. A. Prušová, D. Šmejkalová, M. Chutil, V. Velebný, J. Kučerík, Carbohydr. Polym. 82, 498 (2010).

    Article  Google Scholar 

  61. G. Khachatryan, K. Khachatryan, J. Grzyb, and M. Fiedorowicz, Carbohydr. Polym. 151, 452 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. D. Rebenda, M. Vrbka, P. Cípek, E. Toropitsyn, D. Necas, M. Pravda, M. Hartl, Materials 13, 2659 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  63. T. Yanaki and T. Yamaguchi, Biopolymers 30 (3–4), 415 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. H. Bother and O. Wik, Acta Otolaryngol. 442, 25 (1987).

    Article  Google Scholar 

  65. E. Fouissac, M. Milas, and M. Rinaudo, Macromolecules 26, 6945 (1993).

    Article  CAS  Google Scholar 

  66. J. Reeff, A. Gaignaux, J. Goole, C. de Vriese, K. Amighi, Drug Dev. Ind. Pharm. 39 (11), 1731 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. S. Alves de Oliveira, B. Campos da Silva, I. C. Riegel-Vidotti, A. Urbano, P. C. de Sousa Faria-Tischera, C. A. Tischer, Int. J. Biol. Macromol. 97, 642 (2017).

    Article  CAS  Google Scholar 

  68. H. H. Trimm and B. R. Jennings, Biochem. J. 213, 671 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. J. Kim, J.-Y. Chang, Y.-Y. Kim, M.-J. Kim, H.-S. Kho, Arch. Oral Biol. 89, 55 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Vinogradov, G.V. and Malkin, A.Ya., Rheology of Polymers (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  71. A. Y. Malkin and A. I. Isayev, Rheology: Concepts, Methods, and Applications (ChemTec, Toronto, 2017).

    Google Scholar 

  72. R. A. Horne, R. A. Courant, D. S. Johnson, and F. F. Margosian, J. Phys. Chem. 69 (11), 3988 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Zhavoronok.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E.G., Morenko, E.O., Zhavoronok, E.S. et al. Effect of the Molecular Mass of Hyaluronan on Its Thermophysical Properties and on Dynamic Viscosity of Its Aqueous Solutions. Polym. Sci. Ser. A 64, 467–475 (2022). https://doi.org/10.1134/S0965545X22700249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700249

Navigation