Skip to main content
Log in

Hydrodechlorination of 1,4-Dichlorobenzene over Unsupported Sulfide Catalysts

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A number of unsupported NiMo, CoMo, and NiW sulfide catalysts synthesized in situ from oil-soluble precursors were investigated in hydrodechlorination of 1,4-dichlorobenzene. The unsupported NiW and NiMo sulfide catalysts exhibited the highest activity; after seven hours on stream in a batch-type reactor at 320°C and 4 MPa hydrogen, both catalysts achieved 99% conversion of 1,4-dichlorobenzene, and the selectivity towards chlorine-free products reached 99 and 78%, respectively. Under identical conditions, the CoMo(S) catalyst provided lower conversion (88%) with 100% selectivity. In contrast, under similar conditions a commercial NiW(S) catalyst exhibited comparable conversion with lower selectivity (95%), and a commercial NiMo(S) catalyst provided 82% conversion and 53% selectivity. The activity of the synthesized unsupported catalysts remained unchanged even after five cycles of reuse, whereas the commercial catalysts deactivated due to the destruction of the support when interacting with hydrogen chloride. The study revealed the optimum hydrodechlorination conditions in the presence of unsupported sulfide catalysts and identified the effects of the promoter to active metal ratio on conversion and selectivity. For the NiW(S) catalysts, it was found using X-ray photoelectron spectroscopy that tungsten was mostly present as WOxSy in the first cycle and WO3 in the fifth cycle, and nickel occurred in the NiS, Ni–W–S, and Ni2+ forms. Transmission electron microscopy showed the formation of fine-dispersed particles of NiS and WS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zakharyan, E.M., Petrukhina, N.N., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, pp. 1271–1313. https://doi.org/10.1134/S1070427220090013

    Article  CAS  Google Scholar 

  2. Murena, F. and Gioia, F., Appl. Catal. B: Environm., 2002, vol. 38, pp. 39–50. https://doi.org/10.1016/S0926-3373(02)00025-5

    Article  CAS  Google Scholar 

  3. Tohru, M., Tae, Y., and Yutaka, M., Catal. Today, 2004, vol. 88, pp. 111–120. https://doi.org/10.1016/j.cattod.2003.11.004

    Article  CAS  Google Scholar 

  4. Gioia, F., Gallagher’, E.J., and Famiglietti, V., J. Hazard. Mat., 1994, vol. 38, no. 2, pp. 277–291. https://doi.org/10.1016/0304-3894(94)90028-0

    Article  CAS  Google Scholar 

  5. Puello-Polo, E., Diaz, Y., and Brito, J.L., Catal. Commun., 2017, vol. 99, pp. 89–93. https://doi.org/10.1016/J.CATTOD.2009.05.025

    Article  CAS  Google Scholar 

  6. Stanislaw, G. and Wojciech, P., Chemosphere, 2011, vol. 83, no. 3, pp. 334–339. https://doi.org/10.1016/j.chemosphere.2010.12.037

    Article  CAS  Google Scholar 

  7. Bijan, F.H. and David, T.A., AIChE J., 1990, vol. 36, no. 5, pp. 773–778. https://doi.org/10.1002/aic.690360514

    Article  Google Scholar 

  8. Martino, M., Rosal, R., Sastre, H., and Fernando, V., Appl. Catal. B. Environm., 1999, vol. 20, pp. 301–307. https://doi.org/10.1016/S0926-3373(98)00120-9

    Article  CAS  Google Scholar 

  9. Gryglewicz, G., Stolarski, M., Gryglewicz, S., Klijanienko, A., Piechocki, W., Hoste, S., Van Driessche, I., Carleer, R., and Yperman, J., Chemosphere, 2005, vol. 62, no. 1, pp. 135–141. https://doi.org/10.1016/j.chemosphere.2005.03.097

    Article  CAS  Google Scholar 

  10. Khadzhiev, S.N., Kadiev, H.M., Zekel, L.A., and Kadieva, M.H., Petrol. Chem., 2018, vol. 3, no. 1, pp. 535–541. https://doi.org/10.1134/S0965544118070046

    Article  Google Scholar 

  11. Sizova, I.A., Antonov, S.V., Serdyukov, S.I., and Maksimov, A.L., Petrol. Chem., 2017, vol. 57, no. 1, pp. 66–70. https://doi.org/10.1134/S0965544117010121

    Article  CAS  Google Scholar 

  12. Kasztelan, S., Toulhoat, H., Grimblot, J., and Bonnelle, J.P., Appl. Catal., A, 1984, vol. 13, pp. 127–159. https://doi.org/10.1016/S0166-9834(00)83333-3

    Article  CAS  Google Scholar 

  13. Kniazeva, M.I., Kuchinskaya, T.S., and Erasheva, A.S., Petrol. Chem., 2021, vol. 61, no. 6, pp. 682–687. https://doi.org/10.1134/S0965544121040034

    Article  CAS  Google Scholar 

  14. Wenbin, H., Yasong Zh., Qiang, W., Xiaodong, L., Pengfei, Z., Zhusong, Xu., Zhiqing, Yu., Xiaohan, W., Haoran, L., Xiaojun, D., and Han, Y, Fuel, 2022, vol. 319, article 123802. https://doi.org/10.1016/j.fuel.2022.123802

  15. Lai, W., Chen, Z., Zhu, J., Yang, L., Zheng, J., Yi, X., and Fang, W., Nanoscale, 2016, vol. 8, no. 6, pp. 3823–3833. https://doi.org/10.1039/c5nr08841k

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Dzhabarov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhabarov, E.G., Petrukhina, N.N. Hydrodechlorination of 1,4-Dichlorobenzene over Unsupported Sulfide Catalysts. Pet. Chem. 62, 1334–1342 (2022). https://doi.org/10.1134/S0965544122110032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122110032

Keywords:

Navigation