Skip to main content
Log in

Effects of Reaction Conditions on Synthesis of Butadiene from Formaldehyde and Propylene

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the effects of reaction conditions in a one-step gas-phase synthesis of butadiene from formaldehyde and propylene over a SiO2-supported silicotungstic heteropoly acid catalyst. The physicochemical properties of the catalyst were examined by X-ray fluorescence spectroscopy, low-temperature nitrogen adsorption, XRD, SEM, and NH3–TPD. It was found that, with increase in reaction temperature, the yield of butadiene passes through its maximum. Increasing the WHSV of the reactant feed lowers the formaldehyde conversion and enhances the butadiene selectivity. Raising the propylene to formaldehyde molar ratio increases the formaldehyde conversion, with the butadiene selectivity passing through its maximum. Finally, diluting the reactants with an inert gas barely affects the process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. https://www.marketwatch.com/press-release/global-butadiene-market-share-2022-value-chain-analysis-top-key-players-production-size-product-scope-consumption-global-growth-and-forecast-to-2026-2022-06-14

  2. Samsudin, I.B., Zhang, H., Jaenicke, S., and Chuah, G.-K., Chem. Asian J., 2020, pp. 1–18. https://doi.org/10.1002/asia.202001023

  3. Bedenko, S.P., Dement’ev, K.I., Tret’yakov, V.F., and Maksimov, A.L., Petrol. Chem., 2020, vol. 60, no. 7, pp. 723–730. https://doi.org/10.1134/S0965544120070026

    Article  CAS  Google Scholar 

  4. Liakumovich, A.G., Ahkmed’yanova, R.A., Bogacheva, T.M., and Golovanova, K.V., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 18, pp. 115–118.

    Google Scholar 

  5. Li, Sh., Abdelrahman, O.A., Kumar, G., Tsapatsis, M., Vlachos, D.G., Caratzoulas, S., and Dauenhauer, P.G., ACS Catal., 2019, pp. 1–57. https://doi.org/10.1021/acscatal.9b03129

  6. Khadzhiev, S.N., Maksimov, A.L., Tret’yakov, V.F., Talyshinskii, R.M., and Ilolov, A.M., Petrol. Chem., 2018, vol. 58, no. 8, pp. 613–621. https://doi.org/10.1134/S096554411808011X

    Article  CAS  Google Scholar 

  7. Makshina, E.V., Dusselier, M., Janssens, W., Degréve, J., Jacobs, P.A., and Sels, B.F., Chem. Soc. Rev., 2014, vol. 43, pp. 7917–7953. https://doi.org/10.1039/c4cs00105b

    Article  CAS  PubMed  Google Scholar 

  8. Zacharopoulou, V. and Lemonidou, A.A., Catalysts, 2018, vol. 8, pp. 2–19. https://doi.org/10.3390/catal8010002

    Article  CAS  Google Scholar 

  9. Vasiliadou, E.S., Gould, N.S., and Lobo, R.F., ChemCatChem., 2017, vol. 9, pp. 4417–4425. https://doi.org/10.1002/cctc.201701315

    Article  CAS  Google Scholar 

  10. Wang, Y., Wang, F., Song, Q., Xin, Q., Xu, S., and Xu, J., J. Am. Chem. Soc., 2013, vol. 135, pp. 1506–1515. https://doi.org/10.1021/ja310498c

    Article  CAS  PubMed  Google Scholar 

  11. Liakumovich, A.G., Akhmed’yanova, R.A., Bogacheva, T.M., Miloslavskii, D.G., Yunusova, L.M., and Golovanova, K.V., RU Patent 2561734, 2015.

  12. Kots, P.A., Artsiusheuski, M.A., Grigoriev, Y.V., and Ivanova, I.I., ACS Catal., 2020, vol. 10, pp. 15149– 15161. https://doi.org/10.1021/acscatal.0c03282

    Article  CAS  Google Scholar 

  13. Kots, P.A., Artyushevski, N.A., and Ivanova, I.I., RU Patent 2688158, 2019.

  14. Ponomareva, O.A., Matveeva, O.D., Nikiforov, A.I., Dobryakova, I.V., Kasyanov, I.A., Shkuropatov, A.V., and Ivanova, I.I., Petrol. Chem., 2021, vol. 61, no. 8, pp. 916–924. https://doi.org/10.1134/S0965544121080120

    Article  CAS  Google Scholar 

  15. Berry, F.J., Derrik, G.R., and Mortimer, M., Polyhedron, 2014, vol. 68, pp. 17–22. https://doi.org/10.1016/j.poly.2013.10.014

    Article  CAS  Google Scholar 

  16. Ivanova, I.I., Sushkevich, V.L., Kolyagin, Y.G., and Ordomsky, V.V., Angew. Chem., 2013, vol. 52, pp. 12961–12964. https://doi.org/10.1002/anie.201307083

    Article  CAS  Google Scholar 

Download references

Funding

The investigation of the synthesis, physicochemical properties, and catalytic properties of the catalyst was funded by RFBR (project number 20-03-00587-a). The investigation of the structural characteristics and acidity was carried out within the State Program “Physical chemistry of surface, adsorption and catalysis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ponomareva.

Ethics declarations

I.I. Ivanova, a co-author, is the Chief Editor at the “Sovremennye molekulyarnye sita” (Advanced Molecular Sieves) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, O.A., Artsiusheuski, M.A., Dobryakova, I.V. et al. Effects of Reaction Conditions on Synthesis of Butadiene from Formaldehyde and Propylene. Pet. Chem. 62, 972–979 (2022). https://doi.org/10.1134/S0965544122070039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070039

Keywords:

Navigation