Skip to main content
Log in

Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of an external electric field on the ionic conductivity and selective properties of ceramic membranes based on alumina nanofibers coated with a conductive carbon layer has been studied. It has been shown that the membranes are ideally polarizable in the polarizing voltage range of −500 to +500 mV and, therefore, can be used for implementing switchable ionic selectivity. Experiments have revealed that the membrane resistance decreases with a change in the applied potential from 0 to ±500 mV. It has been shown that the membrane selectivity can be switched from anion to cation by varying the external potential. The surface charge density of the membranes has been determined in terms of the Teorell–Meyer–Sievers model according to the experimental measurements of the membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Strathmann, Ion-Exchange Membrane Separation Processes (Elsevier, Amsterdam, 2004).

    Google Scholar 

  2. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Nanotechnol. Russ. 3, 656 (2008).

    Article  Google Scholar 

  3. A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).

    Article  Google Scholar 

  4. Woodhead Publishing Series in Energy, No. 95: Sustainable Energy from Salinity Gradients., Ed. by A. Cipollina and G. Micale (Elsevier, Amsterdam, 2016).

    Google Scholar 

  5. G. Pourcelly, V. V. Nikonenko, N. D. Pismenskaya, and A. B. Yaroslavtsev, Ionic Interactions and Synthetic Macromolecules, Ed. by A. Ciferri and A. Perico (Wiley, Hoboken, NJ, 2012), Ch. 20.

  6. F. G. Ba∨nica∨, Chemical Sensors and Biosensors: Fundamentals and Applications (Wiley, Chichester, 2012).

    Book  Google Scholar 

  7. J. Malmivuo and R. Plonsey, Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, 1995).

    Book  Google Scholar 

  8. M. Tagliazucchi and I. Szleifer, Mater. Today 18, 131 (2015).

    Article  CAS  Google Scholar 

  9. W. Guan and M. A. Reed, Nano Lett. 12, 6441 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. W. Guan, R. Fan, and M. A. Reed, Nat. Commun. 2, Article no. 506 (2011).

    Google Scholar 

  11. Z. S. Siwy and S. Howorka, Chem. Soc. Rev. 39, 1115 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. X. Hou, W. Guo, and L. Jiang, Chem. Soc. Rev. 40, 2385 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. A. B. Yaroslavtsev, V. V. Nikonenko, and V. I. Zabolotsky, Russ. Chem. Rev. 72, 393 (2003).

    Article  CAS  Google Scholar 

  14. P. Yu. Apel, I. V. Blonskaya, N. V. Levkovich, and O. L. Orelovich, Pet. Chem. 51, 555 (2011).

    Article  CAS  Google Scholar 

  15. W. Sparreboom, A. van der Berg, and J. C. T. Eijkel, Nat. Nanotechnol. 4, 713 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. C. B. Picallo, S. Gravelle, L. Joly, et al., Phys. Rev. Lett. 111, 244501 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. A. Siria, P. Poncharal, A. L. Biance, et al., Nature 494, 455 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. J. Bobacka, A. Ivaska, and A. Lewenstam, Chem. Rev. 108, 329 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. C. Lee, C. Cottin-Bizonne, A. L. Biance, et al., Phys. Rev. Lett. 112, 244501 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Z. Siwy, I. D. Kosin'ska, A. Fulin'ski, and C. R. Martin, Phys. Rev. Lett. 94, 048102 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. M. Nishizawa, V. P. Menon, and C. R. Martin, Science 268, 700 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. C. R. Martin, M. Nishizawa, K. Jirage, et al., Adv. Mater. 13, 1351 (2001).

    Article  CAS  Google Scholar 

  23. D. V. Lebedev, A. V. Shiverskiy, M. M. Simunin, et al., Pet. Chem. 57, 306 (2017).

    Article  CAS  Google Scholar 

  24. V. S. Solodovnichenko, D. V. Lebedev, V. V. Bykanova, et al., Adv. Eng. Mater. 19, 1700244 (2017).

    Article  CAS  Google Scholar 

  25. M. Kang and C. R. Martin, Langmuir 17, 2753 (2001).

    Article  CAS  Google Scholar 

  26. P. Gao and C. R. Martin, ACS Nano 8, 8266 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Q. Wang, C. S. Cha, J. Lu, and L. Zhuang, ChemPhys-Chem 13, 514 (2012).

    Article  CAS  Google Scholar 

  28. Features of Nafen alumina nanofibers. https://doi.org/www.anftechnology.com/nafen.

  29. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications (Elsevier, Amsterdam, 2015).

    Book  Google Scholar 

  30. A. Yu, V. Chabot, and J. Zhang, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications (CRC, Boca Raton, 2013).

    Book  Google Scholar 

  31. E. Avraham, B. Yaniv, A. Soffer, and D. Aurbach, J. Phys. Chem. C 112, 7385 (2008).

    Article  CAS  Google Scholar 

  32. Q. Wang, C. S. Cha, J. Lu, and L. Zhuang, ChemPhys-Chem 13, 514 (2012).

    Article  CAS  Google Scholar 

  33. G. Mpourmpakis and G. Froudakis, J. Chem. Phys. 125, 204707 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. D. J. Cole, P. K. Ang, and K. P. Loh, J. Phys. Chem. Lett. 2, 1799 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ryzhkov.

Additional information

Original Russian Text © D.V. Lebedev, V.S. Solodovnichenko, M.M. Simunin, I.I. Ryzhkov, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 3, pp. 157–165.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, D.V., Solodovnichenko, V.S., Simunin, M.M. et al. Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface. Pet. Chem. 58, 474–481 (2018). https://doi.org/10.1134/S0965544118060075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118060075

Keywords

Navigation