Skip to main content
Log in

Dimethyl ether to olefins conversion in a slurry reactor: Effects of the size of particles and the textural and acidic properties of the MFI-type zeolite

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Effects of the particle size of a suspended zeolite catalyst based on the commercial MFI-type (high modulus zeolite, HMZ) zeolite on its physicochemical characteristics and catalytic properties in the conversion of dimethyl ether (DME) in a three-phase system with a slurry reactor are studied. In order to gain insight into the relationships between the physicochemical characteristics of MFI-type zeolites and their catalytic properties, the textural, acidic, and catalytic properties of HMZ zeolites and synthesized nanocrystallites of the zeolite with the MFI structure are compared. It was found that, in the conversion of DME in the slurry reactor, the catalytic properties of the MFI zeolite are strongly affected by the size of particles of the suspended catalyst: on passage to nanosized suspensions, the activity of the catalyst grows by several times. Reduction in the size of catalyst particles leads to an increase in the yield of hydrocarbons C5 + and a decrease in the yield of lower olefins. At the same dispersity of suspensions, the catalytic properties of suspended catalysts are considerably affected by the distribution of acid sites over strength in the studied zeolite sample and the fraction of amphoteric sites in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Cai, Z. Liu, R. Shi, Ch. He, L. Yang, Ch. Sun, and Y. Chang, Appl. Catal., A 125, 29 (1995).

    Article  CAS  Google Scholar 

  2. B. V. Vora, P. R. Pujado, L. W. Miller, P. T. Barger, H. R. Nilsen, S. Kvisle, and T. Fuglerud, Stud. Surf. Sci. Catal. 136, 537 (2001).

    Article  CAS  Google Scholar 

  3. Makoto Inomata, Akira Higashi, Yoshiteru Makino, and Yoshinori Mashiko, US Patent No. 6852897 (2005).

    Google Scholar 

  4. M. Hack, U. Koss, P. Konig, M. Rothaemel, and H.-D. Holtmann, US Patent, No. 7015369.

  5. U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T. V. Janssens, F. Joensen, S. Bordiga, and K. P. Lillerud, Angew. Chem., Int. Ed. Engl. 51, 5810 (2012).

    Article  CAS  Google Scholar 

  6. P. Kumar, J. W. Thybaut, G. B. Marin, S. Svelle, and U. Olsbye, Ind. Eng. Chem. Res. 52, 1491 (2013).

    Article  CAS  Google Scholar 

  7. A. Takahashi, W. Xia, Q. Wu, T. Furukawa, I. Nakamura, H. Shimada, and T. Fujitani, Appl. Catal., A 467, 380 (2013).

    Article  CAS  Google Scholar 

  8. E. N. Biryukova, T. I. Goryainova, R. V. Kulumbegov, N. V. Kolesnichenko, and S. N. Khadzhiev, Pet. Chem. 51, 50 (2011).

    Article  Google Scholar 

  9. T. I. Goryainova, E. N. Biryukova, N. V. Kolesnichenko, and S. N. Khadzhiev, Pet. Chem. 51, 181 (2011).

    Article  Google Scholar 

  10. N. V. Kolesnichenko, E. E. Kolesnikova, L. E. Kitaev, E. N. Biryukova, N. I. Trukhmanova, and S. N. Khadzhiev, Pet. Chem. 52, 179 (2012).

    Article  Google Scholar 

  11. S. N. Khadzhiev, N. V. Kolesnichenko, E. N. Khivrich, E. E. Kolesnikova, and T. I. Batova, Pet. Chem. 53, 259 (2013).

    Google Scholar 

  12. S. M. T. Almutairi, B. Mezari, E. A. Pidko, P. C. M. M. Magusin, and E. J. M. Hensen, J. Catal. 307, 194 (2013).

    Article  CAS  Google Scholar 

  13. S. N. Khadzhiev, N. V. Kolesnichenko, G. I. Lin, N. A.Markova, Z. M. Bukina, D. A. Ionin, and G. M. Grafova, RF Patent No. 2442767 (2012).

    Google Scholar 

  14. V. L. Baiburskii, V. V. Vints, V. N. Genkin, M. V. Genkin, I. I. Lishchiner, O. V. Malova, E. S. Mortikov, and S. E. Dolinskii, RF Patent No. 2160160 (2000).

    Google Scholar 

  15. O. V. Malova, I. I. Lishchiner, S. E. Dolinskii, V. A. Plakhotnik, A. N. Kuzmicheva, and K. S. Mortikov, RF Patent No. 2160161 (2000).

    Google Scholar 

  16. N. V. Kolesnichenko, L. E. Kitaev, Z. M. Bukina, N. A.Markova, V. V. Yushchenko, O. V. Yashina, and G. I. Lin, A. Ya. Rozovskii, Kinet. Katal. 48, 846 (2007).

    Article  Google Scholar 

  17. C. Thaller, H. Schmaderer, N. Schodel, Er. Haidegger, H. Schmigalle, Ax. Behrens, and V. Goke, CA Patent No. 2863285.

  18. B. Buisson, S. Donegan, D. Wray, A. Parracho, J. Gamble, Ph. Caze, J. Jorda, and C. Guermeur, Chem. Today 27, 12 (2009).

    CAS  Google Scholar 

  19. A. Lira and R. G. Tailleur, Fuel 97, 49 (2012).

    Article  CAS  Google Scholar 

  20. S. D. Pollington, D. L. Enache, P. Landon, S. Meenakshisundaram, N. Dimitratos, A. Wagland, G. J. Hutchings, and E. H. Stitt, Catal. Today 145, 169 (2009).

    Article  CAS  Google Scholar 

  21. A. Pintar, G. Bercic, M. Besson, and P. Gallezot, Appl. Catal. B: Envir 47, 143 (2007).

    Article  Google Scholar 

  22. S. N. Khadzhiev, Pet. Chem. 51, 1 (2011).

    Article  CAS  Google Scholar 

  23. Ya. Liu, T. Hanaoka, T. Miyazawa, K. Murata, K. Okabe, and K. Sakanishi, Fuel Proc. Technol. 90, 901 (2009).

    Article  CAS  Google Scholar 

  24. G. Rispoli, D. Sanfilippo, and A. Amoroso, in Proceedings of the World Heavy Oil Congress (Puerto La Cruz, 2009); Paper359.

    Google Scholar 

  25. A. Haghtalab, M. Nabipoor, and S. Farzad, Fuel Proc. Technol. 104, 73 (2012).

    Article  CAS  Google Scholar 

  26. S. N. Khadzhiev, A. S. Lyadov, M. V. Krylova, and A. Yu. Krylova, Pet. Chem. 51, 25 (2011).

    Google Scholar 

  27. M. Sadeqzadeh, S. Chambrey, S. Piche, P. Fongarland, A. Y. Khodakov, F. Luck, D. Curulla-Ferre, J. Bousquet, and D. Schweich, Catal. Today 215, 52 (2013).

    Article  CAS  Google Scholar 

  28. F. G. Botes, J. Van de Loosdrecht, and J. W. Niemantsverdriet, Catal. Today 215, 112 (2013).

    Article  CAS  Google Scholar 

  29. S. N. Khadzhiev, N. V. Kolesnichenko, N. N. Ezhova, I. G. Korosteleva, O. V. Yashina, and E. N. Khivrich, RF Patent No. 2547838 (2015).

    Google Scholar 

  30. N. V. Kolesnichenko, N. N. Ezhova, and O. V. Yashina, Pet. Chem. 56 (6), 607 (2016).

    Google Scholar 

  31. Verified Synthesis of Zeolitic Materials, Ed. By H. Robson (Elsevier Science, 2001), p.288.

  32. A. G. Popov, V. S. Pavlov, and I. I. Ivanova, J. Catal. 335, 155 (2016).

    Article  CAS  Google Scholar 

  33. A. S. Rodionov, Candidate’s Dissertation in Chemistry (Moscow, 2013) [in Russian].

    Google Scholar 

  34. C. N. Khadzhiev, M. V. Magomedova, and E. G. Peresypkina, Pet. Chem. 54, 243 (2014).

    Google Scholar 

  35. S. Tamm, H. H. Ingelsten, M. Skoglundh, and A. E. C. Palmqvist, J. Catal. 276, 402 (2010).

    Article  CAS  Google Scholar 

  36. J. G. Chen, P. Basu, T. H. Ballinger, and J. T. Yates, Langmuir 5, 352 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Konnov.

Additional information

Original Russian Text © N.V. Kolesnichenko, S.V. Konnov, V.S. Pavlov, O.V. Yashina, N.N. Ezhova, S.N. Khadzhiev, 2017, published in Nanogeterogennyi Kataliz, 2017, Vol. 2, No. 1, pp. 29–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, N.V., Konnov, S.V., Pavlov, V.S. et al. Dimethyl ether to olefins conversion in a slurry reactor: Effects of the size of particles and the textural and acidic properties of the MFI-type zeolite. Pet. Chem. 57, 576–583 (2017). https://doi.org/10.1134/S0965544117070052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117070052

Keywords

Navigation