Skip to main content
Log in

Synthesis and properties of nanosized systems as efficient catalysts for hydroconversion of heavy petroleum feedstock

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The review summarizes published data on the synthesis, physicochemical properties, and activity of nanocatalysts for the hydroconversion of heavy hydrocarbon feedstocks—atmospheric and vacuum residues. New reaction systems used in the hydroconversion of heavy feedstocks—a slurry reactor and a blacking reactor—are discussed. Particular attention is given to the synthesis of promising nanocatalysts by singlelayer dispersion of powders and thermal or chemical conversion of oil- and water-soluble precursors dispersed in a hydrocarbon medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ancheyta and J. G. Speight, Hydroprocessing of Heavy Oils and Residua (CRC, Boca Raton, 2007).

    Google Scholar 

  2. Handbook of Petroleum Processing, Ed. by D.S.J. Jones and P. R. Pujado (Springer, Dordrecht, 2008).

    Google Scholar 

  3. S. N. Khadzhiev, Pet. Chem, 51, 1 (2011).

    Article  CAS  Google Scholar 

  4. J. F. Kriz and M. Ternan, US Patent No. 5 296 130 (1994).

  5. D. Gillis, M. van Wees, and P. Zimmerman, Upgrading residues for high levels of distillate production (UOP, Des Plaines, Ill., 2009). www.digitalrefining.com/article/1000613

    Google Scholar 

  6. M. Motaghi, A. Subramanian, and B. Ulrich, Hydrocarbon Process., February, 37 (2011).

    Google Scholar 

  7. C. Kaidong, P. C. Leung, and B. E. Reynolds, US Patent No. 7 214 309 (2007).

  8. R. Montanari, M. Marchionna, N. Panariti, et al., US Patent No. 8 017 000 (2011).

  9. M. Kh. Kadieva, S. N. Khadzhiev, Kh. M. Kadiev, and T. V. Yakovenko, Pet. Chem. 51, 426 (2011).

    Article  CAS  Google Scholar 

  10. S. N. Khadzhiev, Kh. M. Kadiev, G. P. Yampolskaya, and M. Kh. Kadieva, Adv. Colloid Interface Sci. 197/198, 132 (2013).

    Article  Google Scholar 

  11. T. T. Viet, J. H. Lee, F. Ma, et al., Fuel 103, 553 (2013).

    Article  CAS  Google Scholar 

  12. M. J. Fesharaki, M. Ghashghaee, and R. J. Karimzadeh, Anal. Appl. Pyrol. 102, 97 (2013).

    Article  Google Scholar 

  13. X. Wang, Y. Li, and Z. Zhang, Pet. Refin. Eng. 30(4), 50 (2000).

    Google Scholar 

  14. C. Guan, Z. Wang, A. Guo, and G. Que, Acta Pet. Sin. (Pet. Process. Sect.) 20, 75 (2004).

    CAS  Google Scholar 

  15. C. Liu, G. Que, W. Liang, and Y. Zhu, Pet. Refin. 24(3), 57 (1993).

    CAS  Google Scholar 

  16. J. Zhou, W. Deng, D. Liu, et al., Acta Pet. Sin. (Pet. Process. Sect.) 17, 82 (2001).

    Google Scholar 

  17. N. Panariti, A. Del Bianco, G. Del Piero, and M. Marchionna, Appl. Catal. A: Gen 204, 203 (2000).

    Article  CAS  Google Scholar 

  18. M. S. Rana, V. Saгmano, J. Ancheyta, and J. A. I. Diaz, Fuel 86, 1216 (2007).

    Article  CAS  Google Scholar 

  19. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Article  CAS  Google Scholar 

  20. C. T. Tye and K. J. Smith, Top. Catal. 37, 129 (2006).

    Article  CAS  Google Scholar 

  21. B. C. Bockrath and D. S. Parfitt, Catal. Lett. 33, 201 (1995).

    Article  CAS  Google Scholar 

  22. A. Baudon, J. L. Lemberton, M. Guisnet, et al., Catal. Lett. 36, 245 (1996).

    Article  CAS  Google Scholar 

  23. A. L. Rogach, D. V. Talapin, E. V. Shevchenko, and H. Weller, Adv. Funct. Mater. 12, 653 (2002).

    Article  CAS  Google Scholar 

  24. D. Astruc, Nanoparticles and Catalysis (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  25. M. Boutonnet, J. Kizling, R. Touroude, et al., Catal. Lett. 9, 347 (1991).

    Article  CAS  Google Scholar 

  26. A. Martino, J. P. Wilcoxon, and J. S. Kawola, Energy Fuels 8, 1289 (1994).

    Article  CAS  Google Scholar 

  27. A. G. Hall, A. Duangchan, and K. J. Smith, Can. J. Chem. Eng. 76, 744 (1998).

    Article  CAS  Google Scholar 

  28. I. V. Klimenko, A. S. Golub’, T. S. Zhuravleva, et al., Russ. J. Phys. Chem. A 83, 276 (2009).

    Article  CAS  Google Scholar 

  29. A. S. Golub, G. A. Protsenko, L. V. Gumileva, et al., Russ. Chem. Bull. 42, 632 (1993).

    Article  Google Scholar 

  30. C. O. Oriakhi, J. Chem. Educ. 77, 1138 (2000).

    Article  CAS  Google Scholar 

  31. R. Bissessur, M. G. Kanatzidis, J. L. Schindler, and C. R. Kannewurf, J. Chem. Soc., Chem. Commun., 1582 (1993).

    Google Scholar 

  32. B. M. Rumyantsev, T. S. Zhuravleva, S. B. Bibikov, et al., Russ. J. Phys. Chem. A 80, 1357 (2006).

    Article  CAS  Google Scholar 

  33. J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, J. Appl. Phys. 81, 7934 (1997).

    Article  CAS  Google Scholar 

  34. J. P. Wilcoxon and G. A. Samara, Phys. Rev. 51, 7299 (1995).

    Article  CAS  Google Scholar 

  35. V. Chikan and D. F. Kelley, J. Phys. Chem. B 106, 3794 (2002).

    Article  CAS  Google Scholar 

  36. R. F. Khairutdinov, N. A. Rubtsova, and S. M. B. Costa, J. Lumin. 68, 299 (1996).

    Article  CAS  Google Scholar 

  37. M. W. Peterson and M. T. Nenadovic, et al., J. Phys. Chem. 92, 1400 (1988).

    Article  CAS  Google Scholar 

  38. A. S. Golub, V. I. Zaikovskii, N. D. Lenenko, et al., Russ. Chem. Bull. 53, 1914 (2004).

    Article  CAS  Google Scholar 

  39. M. Gutierrez and A. Henglein, Ultrasonics 27, 259 (1989).

    Article  CAS  Google Scholar 

  40. T. C. Thian, J. Eng. Sci. Technol. 3, 117 (2008).

    Google Scholar 

  41. D. A. Rice, S. J. Hibble, M. J. Almond, et al., J. Mater. Chem. 2, 895 (1992).

    Article  CAS  Google Scholar 

  42. M. M. Mdleleni, T. Hyeon, and K. S. Suslick, J. Am. Chem. Soc. 120, 6189 (1998).

    Article  CAS  Google Scholar 

  43. G. Bellussi, G. Rispoli, D. Molinari, et al., Catal. Sci. Technol. 3, 176 (2013).

    Article  CAS  Google Scholar 

  44. N. Panariti, A. del Bianco, G. del Pieroa, et al., Appl. Catal. A: Gen. 204, 215 (2000).

    Article  CAS  Google Scholar 

  45. B. Fixari, S. Peureux, J. Elmouchnino, et al., Energy Fuels 8, 588 (1994).

    Article  CAS  Google Scholar 

  46. A. del Bianco, N. Panariti, D. Carlo, et al., Energy Fuels 8, 593 (1994).

    Article  Google Scholar 

  47. M. Marchionna, A. Delbianco, N. Panariti, et al., US Appl. No. 2012 0 261 309 (2012).

  48. G. Bellussi, G. Rispoli, and A. Carati, US Appl. No. 2011 0 139 677 (2011).

  49. K. R. Lott and L.-K. Lee, US Appl. No. 20110220553 (2011).

  50. K. R. Lott and L.-K. Lee, US Appl. No. 20050241993 (2205).

  51. K. R. Lott and L.-K. Lee, US Appl. No. 20050241991 (2005).

  52. T. Cyr, L. Lewkowicz, B. Ozum, et al., US Patent No. 5578197 (1996).

  53. H. Sheldon, US Patent No. 4125455 (1978).

  54. R. Bearden, Jr. and C. L. Aldridge, US Patent No. 4134825 (1979).

  55. R. Bearden, Jr. and C. L. Aldridge, US Patent No. 4226742 (1970).

  56. C. L. Aldridge and R. Bearden, Jr., US Patent No. 4066530 (1978).

  57. R. Bearden, Jr. and C. L. Aldridge, US Patent No. 4295995 (1981).

  58. R. Bearden, Jr. and C. L. Aldridge, US Patent No. 4579838 (1986).

  59. O. P. Strausz, US Patent No. 6068758 (2000).

  60. J. G. Gatsis, US Patent No. 4194967 (1980).

  61. Y. Jacquin, M. Davidson, and J. F. L. Page, US Patent No. 4285804 (1981).

  62. O. P. Strausz, Fuel Energy Abstr 37, 176 (1996).

    Article  Google Scholar 

  63. K. Holmberg, B. Jonsson, B. Kronberg, and B. Lindman, Surfactants and Polymers in Aqueous Solution (Wiley, Chichester, 2003), 2nd Ed.

    Google Scholar 

  64. M. J. Lawrence and G. D. Rees, Adv. Drug Delivery Rev. 45, 89 (2000).

    Article  CAS  Google Scholar 

  65. X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature 437(7055), 121 (2005).

    Article  CAS  Google Scholar 

  66. R. T. Andrea, H. Susan, and Y. Peidong, Small 4, 310 (2008).

    Article  Google Scholar 

  67. P. Afanasiev, C. R. Chim. 11, 159 (2008).

    Article  CAS  Google Scholar 

  68. N. Liu, X. Wang, X. Wenya, et al., Progr. Chem. 25, 726 (2013).

    CAS  Google Scholar 

  69. M. Kh. Kadieva, S. N. Khadzhiev, Kh. M. Kadiev, et al., Pet. Chem. 51, 16 (2011).

    Article  CAS  Google Scholar 

  70. J. Thompson, A. Vasquez, J. M. Hill, and P. Pereira-Almao, Catal. Lett. 123, 16 (2008).

    Article  CAS  Google Scholar 

  71. E. Boakye, L. R. Radovic, and K. Osseo-Asare, J. Colloid Interface Sci. 163, 120 (1994).

    Article  CAS  Google Scholar 

  72. S. Wang, C. An, and J. Yuan, Materials 3, 401 (2010).

    Article  CAS  Google Scholar 

  73. K. E. Marchand, M. Tarret, L. Normand, et al., Colloids Surf. A 214, 239 (2003).

    Article  CAS  Google Scholar 

  74. J. P. Wilcoxon, US Patent No. 5 147 841 (1992).

  75. W. Li, J. Zhu, and J. Qi, J. Fuel Chem. Technol, 35, 176 (2007).

    Article  CAS  Google Scholar 

  76. Y. Yoneyama and C. Song, Catal. Today 50, 19 (1999).

    Article  CAS  Google Scholar 

  77. A. A. Tsyganenko, F. Can, A. Travert, and F. Mauge, Appl. Catal., A 268, 189 (2004).

    Article  CAS  Google Scholar 

  78. Y. R. Wang, H. T. Liao, J. Wang, et al., Adv. Mater. Res. 785/786, 787 (2013).

    Article  Google Scholar 

  79. N. Elizondo-Villarreal, R. Velazquez-Castillo, D. H. Galvan, et al., Appl. Catal. A: Gen. 328, 88 (2007).

    Article  CAS  Google Scholar 

  80. X. Feng, Q. Tang, J. Zhou, et al., Crystal Res. Technol. 48, 363 (2013).

    Article  CAS  Google Scholar 

  81. L. Ma and W.-X. Chen, Mater. Chem. Phys. 116, 400 (2009).

    Article  CAS  Google Scholar 

  82. S. Kiran, E. Acosta, and K. Moran, J. Coll. Interface Sci. 336, 304 (2009).

    Article  CAS  Google Scholar 

  83. M. Szymula and A. W. Marczewski, Appl. Surf. Sci. 196, 301 (2002).

    Article  CAS  Google Scholar 

  84. J. P. Rane and V. Pauchard, Langmuir 29, 4750 (2013).

    Article  CAS  Google Scholar 

  85. M. Kh. Kadieva, Candidate’s Dissertation in Chemistry (Moscow, 2011) [in Russian].

  86. N. N. Nassar and M. M. Husein, Fuel Process. Technol. 91, 164 (2010).

    Article  CAS  Google Scholar 

  87. A. E. Abdrabo and M. M. Husein, Energy Fuels 26, 810 (2012).

    Article  CAS  Google Scholar 

  88. S. N. Khadzhiev, Kh. M. Kadiev, V. Kh. Mezhidov, et al., US Patent No. 7 585 406 (2009).

  89. A. K. Samimi, R. Hashemi, J. Zarkesh, et al., in Proceedings of 2nd International Conference on Chemical Engineering and Applications: Book of Thesis (Singapore, 2011), vol. 23, IPCBEE.

    Google Scholar 

  90. S. N. Khadzhiev and Kh. M. Kadiev, RU Patent No. 2412230 (2011).

  91. Z. M. Hanafi, M. A. Khilla, and M. H. Askar, Thermochim Acta 45, 221 (1981).

    Article  CAS  Google Scholar 

  92. G. D. Chukin and B. K. Nefedov, Solid Fuel Chem. 43, 400 (2009).

    Article  Google Scholar 

  93. Kh. M. Kadiev, S. N. Khadzhiev, and M. Kh. Kadieva, Pet. Chem. 53, 298 (2013).

    Article  CAS  Google Scholar 

  94. R. Murray and B. L. Evans, J. Appl. Crystallogr. 12, 312 (1979).

    Article  CAS  Google Scholar 

  95. R. E. Bell and R. E. Herfert, J. Am. Chem. Soc. 79, 3351 (1957).

    Article  CAS  Google Scholar 

  96. F. Wypych and R. Schokllhorn, Chem. Commun., No. 19, 1386 (1992).

  97. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).

    Article  CAS  Google Scholar 

  98. Daage. Chianelli, J. Catal. 149, 414 (1994).

    Article  Google Scholar 

  99. Y. Iwata, K. Sato, Y. Miki, et al., Catal. Today 45, 353 (1998).

    Article  CAS  Google Scholar 

  100. Y. Iwata, Y. Araki, and K. Honna, Catal. Today 65, 335 (2001).

    Article  CAS  Google Scholar 

  101. E. Devers, P. Afanasiev, and M. Vrinat, Catal. Lett. 82, 13 (2002).

    Article  CAS  Google Scholar 

  102. H. Farag, K. Sakanishi, M. Kouzu, et al., J. Mol. Catal. A: Chem. 206, 399 (2003).

    Article  CAS  Google Scholar 

  103. S. Helveg, J. V. Lauritsen, E. Laegsgaard, et al., Phys. Rev. Lett. 84, 951 (2000).

    Article  CAS  Google Scholar 

  104. F. Besenbacher, M. Brorson, B. S. Clausen, et al., Catal. Today 130, 86 (2008).

    Article  CAS  Google Scholar 

  105. K. H. Hu, Tribol. Lett., 47, 79 (2012).

    Article  CAS  Google Scholar 

  106. J. G. Gatsis, US Patent No. 5474977.

  107. J. G. Gatsis, US Patent No. 5288681 (1994).

  108. R. Bearden and Th. R. Halbert, US Patent No. 5620591 (1997).

  109. C. L. Aldridge and R. Bearden, Jr., US Patent No. 4637871 (1987).

  110. R. Bearden, Jr., US Patent No. 4740489 (1988).

  111. R. Bearden, Jr., US Patent No. 5039392 (1991).

  112. B. E. Reynolds and A. Brait, US Patent No. 7771584 (2010).

  113. G. Que, C. Men, and Ch. Meng, US Patent No. 6660157 (2003).

  114. S. Khadzhiev and Kh. Kadiev, The Chem. J., No. 9, 34 (2009).

    Google Scholar 

  115. S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 53, 374 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Kadieva.

Additional information

Original Russian Text © S.N. Khadzhiev, Kh.M. Kadiev, M.Kh. Kadieva, 2014, published in Neftekhimiya, 2014, Vol. 54, No. 5, pp. 327–351.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzhiev, S.N., Kadiev, K.M. & Kadieva, M.K. Synthesis and properties of nanosized systems as efficient catalysts for hydroconversion of heavy petroleum feedstock. Pet. Chem. 54, 323–346 (2014). https://doi.org/10.1134/S0965544114050065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544114050065

Keywords

Navigation