Skip to main content
Log in

Staurolite in Metabasites: P–T–X Parameters and the Ratios of Major Components as Criteria of Staurolite Stability

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Fe–Mg staurolite is a typical and widespread mineral of medium-temperature high-alumina metapelites, whereas magnesian staurolite is only relatively rarely found in metamorphosed mafic rocks (metabasites). The most significant factors controlling staurolite stability in metabasites were identified by thermodynamic modeling and analysis of the common features of the mineral-forming processes. In contrast to staurolite in low- and medium-pressure metapelites, staurolite in metabasites is stable at medium- and high-pressure metamorphism. An increase in the proportion of carbon dioxide in the water–carbon dioxide fluid shifts the staurolite-forming mineral reactions to lower temperatures and higher pressures. Al, Fe, Mg, and Ca are the major components of rocks that are critically important for the formation of magnesian staurolite in these rocks, and the contents and ratios of these components are of crucial importance for the stability of staurolite in metabasites. To understand the processes forming the mineral in metabasites, it is instrumental to subdivide metabasites into subgroups of predominantly magnesian, ferruginous–magnesian, and ferruginous protoliths. With regard to this subdivision, three petrochemical modules are proposed in the form of ratios of major components: MgO/CaO, CaO/FM, and Al2O3/FM, based on which it is possible to predict the stability of staurolite in mafic rocks at appropriate P–T parameters of metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. FM = FeOt + MgO.

  2. Mineral symbols are according to (Whitney and Evans, 2010).

  3. p.f.u. is the number of ions per formula unit.

  4. The coupled variations in the XMg of the minerals are discussed in more detail below.

REFERENCES

  1. Arnold, J., Powell, R., and Sandiford, M., Ampibolites with staurolite and other aluminous minerals: calculated mineral equilibria in NCFMASH, J. Metamorph. Geol., 2000, vol. 18, no. 1, pp. 23–40.

    Article  Google Scholar 

  2. Borisova, E.B. and Baltybaev, Sh.K., Petrochemical criteria of staurolite stability in metapelites at medium-temperature low- and medium-pressure metamorphism, Petrology, 2021, vol. 29, no. 4, pp. 336–350.

    Article  Google Scholar 

  3. Brooks, C.K., The Fe2O3/FeO ratio of basaltic analyses: an appeal for a standardized procedure, Bull. Geol. Soc. Denmark, 1976, vol. 25, pp. 117–120.

    Article  Google Scholar 

  4. Connolly, J.A., Multivariable phase-diagrams - an algorithm based on generalized thermodynamics, Am. J. Sci., 1990, vol. 290, pp. 666–718.

    Article  Google Scholar 

  5. Dawson, J.B., Kimberlites and their Xenoliths, Berlin–Heidelberg: Springer-Verlag, 1980.

    Book  Google Scholar 

  6. Deer, W.A., Howie, R.A., and Zussman, J., Rock-Forming Minerals. Vol. 1a: Orthosilicates, New York: Halsted Press, 1982.

    Google Scholar 

  7. Enami, M. and Zang, Q., Magnesian staurolite in garnet-corundum rocks and eclogite from the Donghoi District, Jiangsu Province, EAS China, Am. Mineral., 1988, vol. 73, pp. 48–58.

    Google Scholar 

  8. Faryad, S.W. and Hoinkes, G., Reaction textures in Al-rich metabasite; implication for metamorphic evolution of the eastern border of the Middle Austroalpine basement units, Lithos, 2006, vol. 90, pp. 145–157.

    Article  Google Scholar 

  9. Fed’kin, V.V., Stavrolit. Sostav, svoistva, paragenezisy i usloviya obrazovaniya (Staurolite: Composition, Properties, Parageneses, and Conditions of Formation), Moscow: Nauka, 1975.

  10. Fockenberg, T., Synthesis and chemical variability of Mg-staurolite in the system MgO–Al2O3–SiO2–H2O as a function of water pressure, Eur. J. Mineral., 1995, vol. 7, pp. 1373–1380.

    Article  Google Scholar 

  11. Grew, E.S. and Sandiford, M., Staurolite in a garnet–hornblende–biotite schist from the Lanterman Range, northern Victoria Land, Antarctica, N. Jahrb. Mineral., 1985, vol. 9, pp. 396–410.

    Google Scholar 

  12. Hellman, P.L. and Green, T.H., The high-pressure experimental crystallization of staurolite in hydrous marine compositions, Contrib. Mineral. Petrol., 1979, vol. 68, pp. 369–372.

    Article  Google Scholar 

  13. Helms, T.S., McSween, H.Y., Laolka, T.C., and Jarosewich, F.E., Petrology of a Georgia Blue Ridge ampibolite unit with hornblende–gedrite–kyanite–staurolite, Am. Mineral., 1987, vol. 72, pp. 1086–1096.

    Google Scholar 

  14. Holdaway, M.J. and Mukhopadhyay, B., Thermodynamic properties of stoichiometric staurolite H2Fe4Al18Si8O48 and H6Fe2Al18Si8O48, Am. Mineral., 1995, vol. 80, pp. 520–533.

    Article  Google Scholar 

  15. Holland, T.J.B. and Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 2011, vol. 29, pp. 333–383.

    Article  Google Scholar 

  16. Hughes, C.J. and Hussey, E.M., Standardized procedure for presenting corrected Fe2O3/FeO ratios in analyses of fine-grained mafic rocks, N. Jb. Mineral. Mh., 1979, vol. 12, pp. 570–572.

    Google Scholar 

  17. Humphreys, H.S., Metamorphic evolution of amphibole-bearing aluminous gneisses from the Eastern-Namaqua Province, South Africa, Am. Mineral., 1993, vol. 78, pp. 1041–1055.

    Google Scholar 

  18. Ibarguchi, J.I. and Mendia, M., Mg- andC-rich staurolite and Cr-rich kyanite in high-pressure ultrabasic rocks (Cabo Ortegal, northwestern Spain), Am. Mineral., 1991, vol. 76, pp. 501–511.

    Google Scholar 

  19. Koch-Müller, M., Experimentally determined Fe–Mg exchange between synthetic staurolite and garnet in the system MgO–FeO–Al2O3–SiO2–H2O, Lithos, 1997, vol. 41, pp. 185–212.

    Article  Google Scholar 

  20. Korikovsky, S.P., Fatsii metamorfizma metapelitov (Metamorphic Facies of Metapelites), Moscow: Nauka, 1979.

  21. Kuhns, R.J., Sawkin, F.J., and Ito, E., Magmatism, metamorphism and deformation at Helmo, Ontario, and the timing of Au–Mo mineralization in the Golden Giant mine, Econ. Geol. Bull. Soc. Econ. Geol, 1994, vol. 89, pp. 720–756.

    Article  Google Scholar 

  22. López, V. and Soto, J., Metamorphism of calc-silicate rocks from the Alboran basement, Zahn, R., Comas, M., and Klaus, A., Eds., Proceedings of the Ocean Drilling Program, Scientific Results, 1991, vol. 161, pp. 251–259.

  23. Mezger, J.E. and Passchier, C.W., Polymetamorphism and ductile deformation of staurolite-cordierite schist of the Bossost Dome: indication for Variscan extension in the axial zone of the central Pyrenees, Geol. Mag., 2003, vol. 140, no. 5, pp. 595–612.

    Article  Google Scholar 

  24. Nicollet, C., Saphirine et staurotide riche en magnésium et chrome dans les amphibolites et anorthosites à corindon du Vohibory Sud, Madagascar, Bull. Mineral., 1986, vol. 109, pp. 599–612.

    Google Scholar 

  25. Powell, R., Holland, T.J.B., and Worley, B., Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC, J. Metamorph. Geol., 1998, vol. 16, pp. 577–588.

    Article  Google Scholar 

  26. Purttscheller, F. and Mogessie, A., Staurolite in garnet ampibolite from Solden, Otztal old crystalline basement, Austria, Tschermaks Mineral. Petrograph. Mitt., 1984, vol. 32, pp. 223–233.

    Article  Google Scholar 

  27. Ríos, C.A. and Castellanos, O.M., First report and significance of the staurolite metabasites associated to a sequence of calc-silicate rocks from the Silgara Formation at the Central Santander Massif, Colombia, Rev. Acad. Colombiana Ciencias Exactas, Fis.Natural., 2014, vol. 38, no. 149, pp. 418–429.

    Google Scholar 

  28. Ríos, C.A., Castellanos, O.M., Gómez, S.I., and Avila, G., Petrogenesis of the metacarbonate and related rocks of the Silgara Formation, Central Santander massif, Colombian Andes: an overview of a “reaction calcic exoscarn”, Earth Sci. Res. J., 2008, vol. 12, pp. 72–106.

    Google Scholar 

  29. Santosh, M., Tsunogae, T., and Koshimoto, S., First report of sapphirine-bearing rocks from the Palghat–Cauvery shear zone system, southern India, Gondwana Res., 2004, vol. 7, pp. 620–626.

    Article  Google Scholar 

  30. Schreyer, W., A reconnaissance study of the system MgO–Al2O3–SiO2–H2O at pressures between l0 and 25 kb, Year Book – Carnegie Inst. Washington, 1967, vol. 6, pp. 380–392.

    Google Scholar 

  31. Schreyer, W. and Seifert, F., High-pressure phases in the system MgO–Al2O3–SiO2–H2O, Am. J. Sci., 1969, vol. 267-A, pp. 407–443.

    Google Scholar 

  32. Schreyer, W., Horrocks, P.C., and Abraham, K., High-magnesium staurolite in a sapphirine-garnet rock from the Limpopo Belt, Southern Africa, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 200–207.

    Article  Google Scholar 

  33. Selverstone, J., Spear, F.S., Franz, G., and Morteani, G., P-T-t paths for hornblende + kyanite + staurolite garbenschists: high-pressure metamorphism in the western Tauern Window, Australia, J. Petrol., 1984, vol. 25, pp. 501–531.

    Article  Google Scholar 

  34. Shimpo, M., Tsunogae, T., and Santosh, M., First report of garnet–corundum rocks from Southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism, Earth Planet. Sci. Lett., 2006, vol. 242, pp. 111–129.

    Article  Google Scholar 

  35. Simon, G. and Chopin, C., Enstatite–sapphirine crack-related assemblages in ultrahigh-pressure pyrope megablasts, Dora-Maira massif, western Alps, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 422–440.

    Article  Google Scholar 

  36. Simon, G., Chopin, C., and Schenk, V., Near-end-member magnesiochloritoid in prograde-zoned pyrope, Dora-Maira massif, western Alps, Lithos, 1997, vol. 41, pp. 37–57.

    Article  Google Scholar 

  37. Spear, F.S., Phase equilibria of amphibolites from the Post Pond volcanics, Vermont, Year Book – Carnegie Inst. Washington, 1977, vol. 76, pp. 613–619.

    Google Scholar 

  38. Spear, F.S., Petrogenetic grid for amphibolites from the Post Pond and Ammonoosuc volcanics, Year Book – Carnegie Inst. Washington, 1978, vol. 77, pp. 805–808.

    Google Scholar 

  39. Spear, F.S., The gedrite–anthophyllite solvus and the composition limits of orthoamphibole from the Post Pond volcanics, Vermont, Am. Mineral., 1980, vol. 65, nos. 11–12, pp. 1103–1118.

    Google Scholar 

  40. Spear, F.S., Phase equilibria of ampibolites from the Post Pond volcanics, Mt. Cube Quadrangle, Vermont, J. Petrol., 1982, vol. 23, pp. 383–426.

    Article  Google Scholar 

  41. Thompson, A., Calc-silicate diffusion zones between marble and pelitic schist, J. Petrol., 1975, vol. 16, pp. 314–346.

    Google Scholar 

  42. Tsujimori, T. and Liou, J.G., Metamorphic evolution of kyanite–staurolite-bearing epidote-ampibolite from the Early Palaeozoic Oeyama Belt, SW Japan, J. Metamorph. Geol., 2004, vol. 22, pp. 301–313.

    Article  Google Scholar 

  43. Tsunogae, T. and Santosh, M., Sapphirine and corundum-bearing granulites from Karur, Madurai Block, Southern India, Gondwana Res., 2003, vol. 6, pp. 925–930.

    Article  Google Scholar 

  44. Tsunogae, T. and van Reenen, D.D., High-pressure and ultrahigh-temperature granulite-facies metamorphism of Precambrian high-grade terranes: case study of the Limpopo Complex, Mem. Geol. Soc. Amer., 2011, vol. 207, pp. 107–124,

    Google Scholar 

  45. Ward, C.M., Magnesium staurolite and green chromian staurolite from Fiordland, New Zealand, Am. Mineral., 1984, vol. 69, pp. 531–540.

    Google Scholar 

  46. White, R.W., Powell, R., Holland, T.J.B., and Worley, B.A., The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and ampibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2000, vol. 18, pp. 497–511.

    Article  Google Scholar 

  47. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers I.I. Likhanov and K.A. Savko for the careful reviews of the manuscript and recommendations that led us to improve and append it.

Funding

This study was carried out under a government-financed research project for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences and was supported by Grant FMUW-2022-0002 from the Ministry of Science and Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. B. Borisova or Sh. K. Baltybaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, E.B., Baltybaev, S.K. & Connolly, J.A. Staurolite in Metabasites: P–T–X Parameters and the Ratios of Major Components as Criteria of Staurolite Stability. Petrology 30 (Suppl 1), S53–S71 (2022). https://doi.org/10.1134/S0869591123010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123010034

Keywords:

Navigation