Skip to main content
Log in

Eocene Calc-Alkaline Volcanic Rocks from Central Iran (Southeast of Khur, Isfahan Province); an Evidence of Neotethys Syn-Subduction Magmatism

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Eocene volcanic rocks with basaltic-trachyandesite and trachybasalt composition which cross-cut the Cretaceous sedimentary rocks, are exposed in the northwestern part of the Central-East Iranian Microcontient (CEIM) (SE of Khur, Isfahan Province, Iran). The rock-forming minerals of these volcanic rocks are olivine (chrysolite and hyalosiderite, Mg# = 0.69–0.71), clinopyroxene (augite with Mg# = 0.74–0.84), orthopyroxene (enstatite with Mg# = 0.61–0.62) and plagioclase (andesine and labradorite with An48.3-65.1). Phenocrysts set in a fine-grained matrix of the same minerals plus sanidine (Or59.1Ab36.6An4.3) with minor amounts of opaque minerals (magnetite and ilmenite). Secondary minerals are chlorite and calcite. The main textures of these volcanic rocks are porphyritic, microlitic porphyritic, poikilitic, and glomeroporphyritic. The Eocene volcanic rocks of the Khur area are characterized by SiO2 content of 51.8 to 54.9 wt %, Al2O3 amounts of 14.35 to 16.47 wt %, and TiO2 values of 0.88 to 0.92 wt %. They exhibit strong enrichment in light rare earth elements (LREE) relative to heavy REE (HREE) (La/Lu ratio up to 102.35), enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HFSE), and present negative anomaly in Eu (Eu/Eu* = 0.72–0.87). Chemical characteristics and homogeneity of these volcanic rocks reveal their calc-alkaline nature and suggest that they were derived from a same parental magma and underwent a similar melt extraction. Major and trace elements geochemical features of the analyzed samples indicate that the parental magma was possibly derived from relatively low degrees of partial melting of a mantle wedge spinel lherzolite which was previously enriched by fluids/melts released from the Neo-Tethyan subducted slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig.7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abdel-Rahman, A.F.M. and Nassar, P.E., Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon, Geol. Mag., 2004, vol. 141, pp. 545–563.

    Article  Google Scholar 

  2. Agard, P., Omrani, J., Jolivet, L., et al., Zagros orogeny: a subduction-dominated process, Geol. Mag., 2011, vol. 148, pp. 692–725.

    Article  Google Scholar 

  3. Aistov, L., Melanikov, B., Krivyokin, B., et al., Geology of Khur Area (Central Iran), Geol. Surv. Iran, Tehran, Technoexport Report, 1984, no. 20, p. 132.

  4. Bagheri, S. and Stampfli, G.M., The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in Central Iran: new geological data, relationships and tectonic implications, Tectonophysics, 2008, vol. 451, pp. 123–155.

    Article  Google Scholar 

  5. Beermann, O., Holtz, F., and Duesterhoeft, E., Magma storage conditions and differentiation of the mafic Lower Pollara volcanics, Salina Island, Aeolian Islands, Italy: implications for the formation conditions of shoshonites and potassic rocks, Contrib. Mineral. Petrol., 2017, vol. 172, pp. 1–21.

    Article  Google Scholar 

  6. Defant, M.J. and Kepezhinskas, P., Evidence suggests slab melting in arc magmas, EOS, Trans. Amer. Geophys. Union., 2001, vol. 82, pp. 65–69.

    Article  Google Scholar 

  7. Dehghani, G.A. and Makris, J., The gravity field and crustal structure of Iran, N. Jb. Geol. Paläont., 1984, vol. 168, pp. 215–229.

    Article  Google Scholar 

  8. Dilek, Y., Imamverdiyev, N., and Altunkaynak, S., Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint, Int. Geol. Rev., 2010, vol. 52, pp. 536–578.

    Article  Google Scholar 

  9. Elliott, T., Tracers of the slab, Geophys. Monogr. Ser., 2003, vol. 138, pp. 23–46.

    Google Scholar 

  10. Ersoy, E.Y., Helvacı, C., and Palmer, M.R., Mantle source characteristics and melting models for the early-middle Miocene mafic volcanism in Western Anatolia: Implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings, J. Volcanol. Geotherm. Res., 2010, vol. 198, pp. 112–128.

    Article  Google Scholar 

  11. Ersoy, E.Y., Palmer, M.R., Genc, S.C., et al., Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of post-collisional magmatism, Lithos, 2017, vol. 288, pp. 55–71.

    Article  Google Scholar 

  12. Femenias, O., Berza, T., Tatu, M., et al., Nature and significance of a Cambro–Ordovician high-K, calc-alkaline sub-volcanic suite: the late-to post-orogenic Motru Dyke Swarm (Southern Carpathians, Romania), Int. J. Earth Sci., 2008, vol. 97, pp. 479–496.

    Article  Google Scholar 

  13. Foley, S.F. and Wheller, G.E., Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanates, Chem. Geol., 1990, vol. 85, pp. 1–18.

    Article  Google Scholar 

  14. Francalanci, L. and Zellmer, G.F., Magma Genesis at the south Aegean volcanic arc, Elements, 2019, vol. 15, pp. 165–170.

    Article  Google Scholar 

  15. Goli, Z., Torabi, G., and Arai, S., High-K calc-alkaline Eocene volcanic rocks from the Anarak area (Central Iran): a key structure for the early stages of oceanic basin closure and the beginning of collision, Geotectonics, 2021, vol. 55, pp. 1–18.

    Article  Google Scholar 

  16. Gorton, M.P. and Schandl, E.S., From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks, Can. Mineral., 2000, vol. 38, pp. 1065–1073.

    Article  Google Scholar 

  17. Gudnason, J., Holm, P.M., Soager, N., et al., Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina, J. S. Amer. Earth Sci., 2012, vol. 37, pp. 191–201.

    Article  Google Scholar 

  18. Guo, Z., Cheng, Z., Zhang, M., et al., Post-collisional high-K calc-alkaline volcanism in Tengchong volcanic field, SE Tibet: constraints on Indian eastward subduction and slab detachment, J. Geol. Soc. London, 2015, vol. 172, pp. 624–640.

    Article  Google Scholar 

  19. Harangi, S., Downes, H., Thirlwall, M., et al., Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western Carpathian arc, eastern central Europe, J. Petrol., 2007, vol. 48, pp. 2261–2287.

    Article  Google Scholar 

  20. Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram, J. Petrol., 2007, vol. 48, pp. 2341–2357.

    Article  Google Scholar 

  21. Hirschmann, M.M., Asimow, P.D., Ghiorso, M.S., et al., Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production, J. Petrol., 1999, vol. 40, pp. 831–851.

    Article  Google Scholar 

  22. Hollocher, K., Robinson, P., Walsh, E., et al., Geochemistry of amphibolite-facies volcanics and gabbros of the Storen Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings, Amer. J. Sci., 2012, vol. 312, pp. 357–416.

    Article  Google Scholar 

  23. Hou, T., Zhang, Z., Encarnacion, J., et al., Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, Eastern China: Constraints on petrogenesis and iron sources, Lithos, 2010, vol. 119, pp. 330–344.

    Article  Google Scholar 

  24. Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548.

    Article  Google Scholar 

  25. Jamshidzaei, A., Torabi, G., Morishita, T., et al., Eocene dike swarm and felsic stock in Central Iran: roles of metasomatized mantle wedge and Neo-Tethyan slab, J. Geodynam., 2021, vol. 145.

    Google Scholar 

  26. Jaques, A.L., Creaser, R.A., Ferguson, J., et al., A review of the alkaline rocks of Australia, S. Afr. J. Geol., 1985, vol. 88, pp. 311–334.

    Google Scholar 

  27. Kelemen, P.B., Hanghoj, H., and Greene, A.R., One view of the geochemistry of subduction- related magmatic arcs, with an emphasis on primitive andesite and lower crust, Treatise on Geochemistry, 2014, vol. 4, pp. 749–797.

    Article  Google Scholar 

  28. Kiseeva, E.S., Kamenetsky, V.S., Yaxley, G.M., et al., Mantle melting versus mantle metasomatism - The chicken or the egg dilemma, Chem. Geol., 2017, vol. 455, pp. 120–130.

    Article  Google Scholar 

  29. Li, W., Ge, C., Wang, F., et al., The spatial distribution characteristics of Nb–Ta of mafic rocks in subduction zones, Open Geosci., 2021, vol. 13, pp. 390–400.

    Article  Google Scholar 

  30. Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., Igneous Rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge: Cambridge University Press, 2005.

    Google Scholar 

  31. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  32. McDonough, W.F. and Sun, S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  33. Middlemost, E.A., Iron oxidation ratios, norms and the classification of volcanic rocks, Chem. Geol., 1989, vol. 77, pp. 19–26.

    Article  Google Scholar 

  34. Mo, X., Hou, Z., Niu, Y., et al., Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet, Lithos, 2007, vol. 96, pp. 225–242.

    Article  Google Scholar 

  35. Muller, D., Rock, N.M.S., and Groves, D.I., Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study, Mineral. Petrol., 1992, vol. 46 pp. 259–289.

    Article  Google Scholar 

  36. Muller, D. and Groves, D., Potassic Igneous Rocks and Associated Gold–Copper Mineralization, New York: Springer, 2019.

    Book  Google Scholar 

  37. Murphy, J., Igneous rock associations. Arc magmatism II: Geochemical and isotopic characteristics, Geosci. Can. Ser., 2007, vol. 34, pp. 7–35.

    Google Scholar 

  38. Nazari, G.H., Torabi, G., Arai, S., et al., Lower Oligocene calc-alkaline spessartitic lamprophyres from Central Iran (east of Anarak area): an evidence from the eastern branch of Neotethys subduction-related mantle enrichment, Geotectonics, 2019, vol. 53, pp. 786–805.

    Article  Google Scholar 

  39. Nosouhian, N., Torabi, G., and Arai, S., Late Cretaceous dacitic dykes swarm from Central Iran, a trace for amphibolite melting in a subduction zone, Geotectonics, 2016, vol. 50, pp. 295–312.

    Article  Google Scholar 

  40. Oyan, V., Keskin, M., Lebedev, V.A., et al., Petrology and geochemistry of the Quaternary mafic volcanism to the NE of Lake Van, Eastern Anatolian Collision Zone, Turkey, J. Petrol., 2017, vol. 58, pp. 1701–1728.

    Article  Google Scholar 

  41. Pearce, J.A., Trace element characteristics of lavas from destructive plate boundaries, in Andesites: Orogenic Andesites and Related Rocks, Thorpe, T.S., Eds., Chichester: John Wiley and Sons, 1982.

    Google Scholar 

  42. Pirnia, T., Saccani, E., Torabi, G., et al., Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts, Geosci. Front., 2020, vol. 11, pp. 57–81.

    Article  Google Scholar 

  43. Rajabi, S., Torabi, G., and Arai, S., Oligocene crustal xenolith-bearing alkaline basalt from Jandaq area (Central Iran): implications for magma genesis and crustal nature, Island Arc, 2014, vol. 23, pp. 125–141.

    Article  Google Scholar 

  44. Remizov, D. and Pease, V., The Dzela complex, Polar Urals, Russia: A Neoproterozoic island arc, Geol. Soc. Lond. Mem., 2004, vol. 30, pp. 107–123.

    Article  Google Scholar 

  45. Sargazi, M., Torabi, G., and Morishita, T., Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of Jandaq, central Iran): Implications for the eastern branch of the Neo-Tethys subduction, Turk. J. Earth Sci., 2019, vol. 28, pp. 558–588.

    Article  Google Scholar 

  46. Schmidt, M.W. and Jagoutz, O., The global systematics of primitive arc melts, Geochem. Geophys. Geosyst., 2017, vol. 18, pp. 2817–2854.

    Article  Google Scholar 

  47. Sen, P.A., Temel, A., and Gourgaud, A., Petrogenetic modelling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia, Geol. Mag., 2004, vol. 141, pp. 81–98.

    Article  Google Scholar 

  48. Shirdashtzadeh, N., Torabi, G., and Schaefer, B., A magmatic record of Neoproterozoic to Paleozoic convergence between Gondwana and Laurasia in the northwest margin of the Central-East Iranian Microcontinent, J. Asian Earth Sci., 2018, vol. 166, pp. 35–47.

    Article  Google Scholar 

  49. Stocklin, J., Structural history and tectonics of Iran: A review, AAPG Bull., 1968, vol. 52, pp. 1229–1258.

    Google Scholar 

  50. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  51. Tadayon, M., Rossetti, F., Zattin, M., et al., The long-term evolution of the Doruneh Fault region (Central Iran): A key to understanding the spatio-temporal tectonic evolution in the hinterland of the Zagros convergence zone, Geol. J., 2019, vol. 54, pp. 1454–1479.

    Article  Google Scholar 

  52. Tatsumi, Y., Slab melting: Its role in continental crust formation and mantle evolution, Geophys. Res. Lett., 2000, vol. 27, pp. 3941–3944.

    Article  Google Scholar 

  53. Taylor, S.R. and McLennan, S., The geochemical evolution of the continental crust, Rev. Geophys., 1995, vol. 33, pp. 241–265.

    Article  Google Scholar 

  54. Tegner, C., Lesher, C.E., Larsen, L.M., et al., Evidence from the rare-earth element record of mantle melting for cooling of the Tertiary Iceland mantle plume, Nature, 1998, vol. 395, pp. 591–594.

    Article  Google Scholar 

  55. Torabi, G., Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction, Island Arc, 2010, vol. 19.

  56. Torabi, G., Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust, Petrology, 2011, vol. 19, pp. 675–689.

    Article  Google Scholar 

  57. Torabi, G. and Arai, S., Back-arc Paleo-Tethys related blueschist from Central Iran, south of Chupanan, Isfahan Province, Petrology, 2013, vol. 21, pp. 393–407.

    Article  Google Scholar 

  58. Torabi, G., Arai, S., and Abbasi, H., Eocene continental dyke swarm from Central Iran (Khur area), Petrology, 2014, vol. 22, pp. 617–632.

    Article  Google Scholar 

  59. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  60. Winchester, J.A. and Floyd, P.A., Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chem. Geol., 1977, vol. 20, pp. 325–343.

    Article  Google Scholar 

  61. Wood, D.A., The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province, Earth Planet. Sc. Lett., 1980, vol. 50, pp. 11–30.

    Article  Google Scholar 

  62. Yan, J. and Zhao, J.X., Cenozoic alkali basalts from Jingpohu, NE China: the role of lithosphere-asthenosphere interaction, J. Asian Earth Sci., 2008, vol. 33, pp. 106–121.

    Article  Google Scholar 

  63. Zhu, R.Z., Lai, S.C., Qin, J.F., et al., Petrogenesis of high-K calc-alkaline granodiorite and its enclaves from the SE Lhasa block, Tibet (SW China): Implications for recycled subducted sediments, Geol. Soc. Amer. Bull., 2019, vol. 131, pp. 1224–1238.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the University of Isfahan (Iran) and Kanazawa University (Japan) for financial support and laboratory facilities, respectively. We would also like to gratefully acknowledge the detailed and constructive comments and valuable suggestions of reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodrat Torabi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniz Shadman, Torabi, G. & Morishita, T. Eocene Calc-Alkaline Volcanic Rocks from Central Iran (Southeast of Khur, Isfahan Province); an Evidence of Neotethys Syn-Subduction Magmatism. Petrology 30, 671–689 (2022). https://doi.org/10.1134/S0869591122060042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122060042

Keywords:

Navigation