Skip to main content
Log in

Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from the V. Grib Kimberlite, Arkhangelsk Province

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

We investigated mantle eclogite and garnet pyroxenite xenoliths from the V. Grib kimberlite located in the Arkhangelsk diamond province. The eclogites in the lithospheric mantle beneath the Arkhangelsk province were strongly modified by metasomatic processes, which totally obliterated the primary features of protolith. Detailed studies of the xenoliths allowed us to distinguish the following metasomatic events: (1) early mantle metasomatism and (2) interaction with kimberlite melt. During the multiple early mantle metasomatism, primary clinopyroxene and garnet were replaced by metasomatic clinopyroxene, garnet, amphibole, calcite, and phlogopite under the influence of carbonated ultramafic melts. The impact of kimberlite melt caused the dissolution and recrystallisation of solid-phase inclusions and formation of melt pockets consisting of serpentine, chlorite, carbonate, spinel, perovskite, amphibole, recrystallized garnet, and clinopyroxene. En route to the surface in kimberlite melt, the xenoliths were disintegrated and primary garnet and clinopyroxene were metasomatized with increasing Ti and Cr contents, up to formation of high-Cr megacrysts. The garnet pyroxenites are represented by high-Ca, low-Mg and low-Ca, high-Mg types. It is shown that the high-Ca, low-Mg garnet pyroxenites can be the final products of the eclogite xenolith metasomatism by carbonated ultramafic melts. The low-Ca, high-Mg pyroxenites were derived through the interaction of a partial eclogite melt with depleted peridotites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. In supplementary materials to the Russian and English on-line versions on sites https://elibrary.ru/ and http://link.springer.com/ respectively report: ESM_1.pdf (Supplementary 1)—Description of analytical methods; ESM_2.xlsx (Supplementary 2)—Major-oxide composition of minerals; ESM_3.xlsx (Supplementary 3)—Geochemical tables: trace-element composition of minerals and whole rock; ESM_4.pdf (Supplementary 4)—Additional figures.

REFERENCES

  1. Arzamastsev, A.A. and Fu-Yuan Wu, U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.

    Article  Google Scholar 

  2. Aulbach, S., Creaser, R.A., Pearson, N.J., et al., Sulfide and whole rock Re-Os systematics of eclogite and pyroxenite xenoliths from the Slave Craton, Canada, Earth Planet. Sci. Lett., 2009, vol. 283, pp. 48–58. https://doi.org/10.1016/j.epsl.2009.03.023

    Article  Google Scholar 

  3. Aulbach, S., Viljoen, K.S., and Gerdes, A., Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal Craton record subduction processes and mantle metasomatism, respectively, Lithos, 2020a. https://doi.org/10.1016/j.lithos.2020.105588

  4. Aulbach, S., Massuyeau, M., Garber, J.M., et al., Ultramafic carbonated melt- and auto-metasomatism in mantle eclogites: compositional effects and geophysical consequences, Geochem. Geophys. Geosyst., 2020b. https://doi.org/10.1029/2019GC008774

  5. Beard, A.D., Downes, H., Hegner, E., and Sablukov, S.M., Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types, Lithos, 2000, vol. 51, nos. 1–2, pp. 47–73.

    Article  Google Scholar 

  6. Bogdanova, S.V. and Gorbatschev, R., Europe|East European Craton, Earth Systems and Environmental Sciences (Elsevier, 2016), pp. 1–18.

    Google Scholar 

  7. Bussweiler, Y., Polymineralic inclusions in megacrysts as proxies for kimberlite melt evolution—a review, Minerals, 2019, vol. 9, no. 9, p. 530.

    Article  Google Scholar 

  8. Carswell, D.A., Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths, Physics and Chemistry of the Earth (Pergamon Press Ltd, 1975), pp. 417–429.

    Google Scholar 

  9. Coleman, R.G., Lee, D.E., Beatty, L.B., and Brannock, W.W., Eclogites and eclogites: their differences and similarities, Geol. Soc. Am. Bull., 1965, vol. 76, pp. 483–508.

    Article  Google Scholar 

  10. Czas, J., Stachel, T., Pearson, D.G., et al., Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask Craton, Canada, Mineral. Petrol., 2018, vol. 112, pp. 311–423.

    Article  Google Scholar 

  11. De Stefano, A., Kopylova, M.G., Cartigny, P., and Afanasiev, V., Diamonds and eclogites of the Jericho kimberlite (Northern Canada), Contrib. Mineral. Petrol., 2009, vol. 158, pp. 295–315.

    Article  Google Scholar 

  12. Giuliani, A., Soltys, A., Phillips, D., et al., The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr–C–O isotope geochemistry of the, Chem. Geol., 2017, vol. 455, pp. 342–456.

    Article  Google Scholar 

  13. Gréau, Y., Huang, J.X., Griffin, W.L., et al., Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 6927–6954. https://doi.org/10.1016/j.gca.2011.08.035

    Article  Google Scholar 

  14. Griffin, W.L., Shee, S.R., Ryan, C.G., et al., Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 232–250.

    Article  Google Scholar 

  15. Griffin, W.L., O’Reilly, S.Y., Abe, N., et al., The origin and evolution of Archean lithospheric mantle, Precambrian Res., 2003, vol. 127, pp. 19–41.

    Article  Google Scholar 

  16. Griffin, W.L. and O’Reilly, S.Y., Cratonic lithospheric mantle: is anything subducted?, Episodes, 2007, vol. 30, pp. 43–53.

    Article  Google Scholar 

  17. Hawthorne, F.C., Oberti, R., Harlow, G.E., et al., Ima report: nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, nos. 11–12, pp. 2031–2048.

    Article  Google Scholar 

  18. Herzberg, C., Origin of high-mg bimineralic eclogite xenoliths in kimberlite: a comment on a paper by aulbach and arndt, Earth Planet. Sci. Lett., 2019, vol. 510, pp. 231–233.

    Article  Google Scholar 

  19. Horodyskyj, U.N., Lee, C.T.A., and Ducea, M.N., Similarities between Archean high-Mgo eclogites and Phanerozoic arc-eclogite cumulates and the role of arcs in Archean continent formation, Earth Planet. Sci. Lett., 2007, vol. 256, nos. 3–4, pp. 510–520.

    Article  Google Scholar 

  20. Jacob, D.E., Nature and origin of eclogite xenoliths from kimberlites, Lithos, 2004, vol. 77, pp. 295–316.

    Article  Google Scholar 

  21. Karandashev V.K., Khvostikov V.A., Nosenko, S.Yu., and Burmii, Zh.P., Use of highly enriched stable isotopes in mass analysis of rock samples, grounds, soils, and bottom deposits by induction coupled plasma mass spectrometry, Zavodskaya Laboratoriya. Diagnostika Materialov, 2016, vol. 82, no. 7, pp. 6–15.

    Google Scholar 

  22. Kargin, A.V., Sazonova, L.V., Nosova, A.A., and Tretyachenko, V.V., Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts, Lithos, 2016, vol. 262, pp. 442–455.

    Article  Google Scholar 

  23. Kargin, A.V., Sazonova, L.V., Nosova, A.A., et al., Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts, Lithos, 2017, vol. 292-293, pp. 34–38. https://doi.org/10.1016/j.gsf.2016.03.001

    Article  Google Scholar 

  24. Kiseeva, E.S., Kamenetsky, V.S., Yaxley, G.M., and Shee, S.R., Mantle melting versus mantle metasomatism - “the” chicken or the “egg"" dilemma, Chem. Geol., 2017, vol. 455, pp. 120–130.

    Article  Google Scholar 

  25. Kononova, V.A., Golubeva, Y.Y., Bogatikov, O.A., and Kargin, A.V., Diamond resource potential of kimberlites from the Zimny Bereg field, Arkhangel’sk oblast, Geol. Ore Deposits, 2007, vol. 49, pp. 421–441.

    Article  Google Scholar 

  26. Koreshkova, M.Yu., Levskii, L.K., and Ivanikov, V.V., Petrology of a lower crustal xenolith suite from dikes and explosion pipes of the Kandalaksha graben, Petrology, 2001, vol. 9, no. 1, pp. 79–96.

    Google Scholar 

  27. Korolev, N., Nikitina, L.P., Goncharov, A., et al., Three types of mantle eclogite from two layers of oceanic crust: a key case of metasomataically-aided transformation of low-to-high-magnesian eclogite, J. Petrol., 2021, vol. 62, pp. 1–38. https://doi.org/10.1007/s00710-020-00704-0

    Article  Google Scholar 

  28. Kostrovitsky, S.I., Malkovets, V.G., Verichev, E.M., et al., Megacrysts from the Grib kimberlite pipe (Arkhangelsk province, Russia), Lithos, 2004, vol. 77, nos. 1–4, pp. 511–523.

    Article  Google Scholar 

  29. Kutolin, V.A. and Frolova, V.M., Petrology of ultrabasic inclusions from basalts of Minusa and Transbaikalian regions (Siberia, USSR), Contrib. Mineral. Petrol., 1970, vol. 29, no. 2, pp. 163–179.

    Article  Google Scholar 

  30. Larionova, Yu.O., Sazonova, L.V., Lebedeva, N.M., et al., Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite, Petrology, 2016, vol. 24, no. 4, pp. 562–593. https://doi.org/10.1134/S0869591116040020

    Article  Google Scholar 

  31. Lebedeva, N.M., Nosova, A.A., Kargin, A.V., and Sazonova, L.V., Multi-stage evolution of kimberlite melt as inferred from inclusions in garnet megacrysts in the Grib kimberlite (Arkhangelsk region, Russia), Mineral. Petrol., 2020a, vol. 114, pp. 273–288. https://doi.org/10.1007/s00710-020-00704-0

    Article  Google Scholar 

  32. Lebedeva, N.M., Nosova, A.A., Kargin, A.V., et al., Sr–Nd–O isotopic evidence of variable sources of mantle metasomatism in the subcratonic lithospheric mantle beneath the Grib kimberlite, northwestern Russia, Lithos, 2020b, vol. 376–377, 105779. https://doi.org/10.1016/j.lithos.2020.105779

    Article  Google Scholar 

  33. Le Roex, A., Tinguely, C., and Gregoire, M., Eclogite and garnet pyroxenite xenoliths from kimberlites emplaced along the southern margin of the Kaapvaal Craton, Southern Africa: mantle or lower crustal fragments?, J. Petrol., 2020, vol. 61. https://doi.org/10.1093/petrology/egaa040

  34. Luo, Y. and Korenaga, J., Efficiency of eclogite removal from continental lithosphere and its implications for cratonic diamonds, Geology, 2021, vol. 49, pp. 438–441. https://doi.org/10.1130/G48204.1

    Article  Google Scholar 

  35. Malkovets, V., Taylor, L., Griffin, W., et al., Eclogites from the Grib kimberlite pipe, Arkhangelsk, Russia, 8th International Kimberlite Conference, Abstract, Canada, 2003 (Elsevier, Victoria, 2003), p. 5.

  36. Mallik, A. and Dasgupta, R., Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts, Earth Planet. Sci. Lett., 2012, vol. 329–330, pp. 97–108. https://doi.org/10.1016/j.epsl.2012.02.007

    Article  Google Scholar 

  37. Mandler, B.E. and Grove, T.L., Controls on the stability and composition of amphibole in the Earth’s mantle, Contrib. Mineral. Petrol., 2016, vol. 171, no. 8, pp. 1–20.

    Article  Google Scholar 

  38. Mattey, D., Lowry, D., and Macpherson, C., Oxygen isotope compositions of mantle peridotite, Earth Planet. Sci. Lett., 1994, vol. 128, pp. 231–241.

    Article  Google Scholar 

  39. Mikhailenko, D., Golovin, A., Korsakov, A., et al., Metasomatic evolution of coesite-bearing diamondiferous eclogite from the Udachnaya kimberlite, Minerals, 2020, vol. 10. https://doi.org/10.3390/min10040383

  40. Misra, K.C., Anand, M., Taylor, L.A., and Sobolev, N.V., Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia, Contrib. Mineral. Petrol., 2004, vol. 146, no. 6, pp. 696–714.

    Article  Google Scholar 

  41. Morimoto, N., Nomenclature of pyroxenes, Mineral. Petrol., 1988, vol. 39, no. 1, pp. 55–76.

    Article  Google Scholar 

  42. Niida, K. and Green, D.H., Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 1999, vol. 135, no. 1, pp. 18–40.

    Article  Google Scholar 

  43. Nosova, A.A., Dubinina, E.O., Sazonova, L.V., et al., Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk province: contribution of mantle metasomatism, Petrology, 2017, vol. 25, pp. 150–180. https://doi.org/10.1007/978-3-642-28394-9_12

    Article  Google Scholar 

  44. Pearson, D.G., Snyder, G.A., Shirey, S.B., et al., Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics, Nature, 1995a, vol. 374, no. 6524, pp. 711–713.

    Article  Google Scholar 

  45. Pearson, D.G., Shirey, S.B., Carlson, R.W., et al., Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism, Geochim. Cosmochim. Acta, 1995b, vol. 59, no. 5, pp. 959–977.

    Google Scholar 

  46. Perchuk, A.L., Yapaskurt, V.O., and Davydova, V.V., Melt inclusions in eclogite garnet: experimental study of natural processes, Russ. Geol. Geophys., 2008, vol. 49, no. 5, pp. 310–312.

    Article  Google Scholar 

  47. Pivin, M., Féménias, O., and Demaiffe, D., Metasomatic mantle origin for Mbuji–Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo), Lithos, 2009, vol. 112, pp. 951–960. https://doi.org/10.1016/j.lithos.2009.03.050

    Article  Google Scholar 

  48. Pobric, V., Korolev, N., and Kopylova, M., Eclogites of the North Atlantic Craton: insights from the Chidliak eclogite xenoliths (S. Baffin Island, Canada), Contrib. Mineral. Petrol., 2020, vol. 175, pp. 1–25.

    Article  Google Scholar 

  49. Rapp, R.P., Shimizu, N., Norman, M.D., and Applegate, G.S., Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa, Chem. Geol., 1999, vol. 160, no. 4, pp. 335–356.

    Article  Google Scholar 

  50. Reid, A.M., Donaldson, C.H., Dawson, J.B., et al., The Igwisi Hills extrusive “kimberlites”, Phys. Chem. Earth, 1975, pp. 199–218.

  51. Sablukov, S.M., Sablukova, L.I., Shavyrina, M.V., Mantle xenoliths from the Zimnii Bereg kimberlite deposits of rounded diamonds, Arkhangelsk Diamondiferous Province, Petrology, 2000, vol. 8, no. 5, pp. 466–494.

    Google Scholar 

  52. Samsonov, A.V., Nosova, A.A., Tretyachenko, V.V., and Larchenko, V.A., Collisional sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform, Dokl. Earth Sci., 2009, vol. 425, pp. 226–230. https://doi.org/10.1134/S1028334X09020111

    Article  Google Scholar 

  53. Sazonova, L.V., Nosova, A.A., Kargin, A.V., et al., Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk Diamond Province, Russia: types, composition, and origin, Petrology, 2015, vol. 23, pp. 227–258.

    Article  Google Scholar 

  54. Shatskiy, A., Bekhtenova, A., Podborodnikov, I.V., et al., Solidus of carbonated phlogopite eclogite at 3-6 gpa: implications for mantle metasomatism and ultra-high pressure metamorphism, Gondwana Res, 2022, vol. 103, pp. 188–204.

    Article  Google Scholar 

  55. Shchukina, E.V., Agashev, A.M., Soloshenko, N.G., et al., Origin of V. Grib pipe eclogites (Arkhangelsk region, NW Russia): geochemistry, Sm-Nd and Rb-Sr isotopes and relation to regional Precambrian tectonics, Mineral. Petrol., 2019. https://doi.org/10.1007/s00710-019-00679-7

  56. Shu, Q., Brey, G.P., and Pearson, D.G., Eclogites and garnet pyroxenites from Kimberley, Kaapvaal Craton, South Africa: their diverse origins and complex metasomatic signatures, Mineral. Petrol., 2018, vol. 112, pp. 43–56.

    Article  Google Scholar 

  57. Smart, K.A., Heaman, L.M., Chacko, T., et al., The origin of high-MgO diamond eclogites from the Jericho kimberlite, Canada, Earth Planet. Sci. Lett., 2009, vol. 284, pp. 527–537.

    Article  Google Scholar 

  58. Smart, K.A., Tappe, S., Simonetti, A., et al., Tectonic significance and redox state of paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada, Chem. Geol., 2017, vol. 455, pp. 98–119. https://doi.org/10.1016/j.chemgeo.2016.10.014

    Article  Google Scholar 

  59. Smart, K.A., Tappe, S., Woodland, A.B., et al., Metasomatized eclogite xenoliths from the central kaapvaal craton as probes of a seismic mid-lithospheric discontinuity, Chem. Geol., 2021, vol. 578. https://doi.org/10.1016/j.chemgeo.2021.120286

  60. Smit, K.V., Stachel, T., Creaser, R.A., et al., Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for superior craton formation, Geochim. Cosmochim. Acta, 2014, vol. 125, pp. 308–337. https://doi.org/10.1016/j.gca.2013.10.019

    Article  Google Scholar 

  61. Spetsius, Z.V. and Taylor, L.A., Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis, Int. Geol. Rev., 2002, vol. 44, pp. 973–987.

    Article  Google Scholar 

  62. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London: Spec. Publ., 1989, vol. 42, pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  63. Taylor, L.A. and Neal, C.R., Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry, J. Geol., 1989, vol. 97, pp. 551–567.

    Article  Google Scholar 

  64. Warr, L.N., IMA–CNMNC approved mineral symbols, Mineral. Mag., 2021, vol. 85, pp. 291–320.

    Article  Google Scholar 

  65. White, W.M., Isotope Geochemistry, Blackwell: John Wiley & Sons, 2015.

    Google Scholar 

  66. Yaxley, G.M. and Green, D.H., Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust, Swiss J. Geosci., vol. 78, no. Suppl. 1998, pp. 243–255.

Download references

ACKNOWLEDGMENTS

We are grateful to I.S. Sagaidak and other colleagues from the Northwestern Regional Fund of Geological Information, Arkhangelsk, and the corporate management of the JSC Severalmaz and personally A.S. Galin, I.S. Zesin, and A.N. Gudin for permission and help with kimberlite sampling. E.O. Dubinina is thanked for the measurement of oxygen isotope composition in minerals and N.N. Korotaeva, for SEM study of minerals. We acknowledge critical comments by A.V. Kargin (IGEM RAS), and reviewers D.M. Mikhailenko (IGM, SB RAS) and M.G. Kopylova (University of British Columba), which significantly improved the manuscript.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-35-90037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Lebedeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, N.M., Nosova, A.A., Sazonova, L.V. et al. Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from the V. Grib Kimberlite, Arkhangelsk Province. Petrology 30, 479–498 (2022). https://doi.org/10.1134/S0869591122050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122050046

Keywords:

Navigation