Skip to main content
Log in

Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite–Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper summarizes major and trace-element compositions and Sm–Nd isotope data on metabasites (amphibolites) and gabbroids of the Onot granite–greenstone block in the Sharyzhalgai basement uplift, southwestern Siberian craton. The Onot block consists of tectonically combined nappes of the Paleoarchean tonalite–trondhjemite–granodiorite (TTG) complex and the metasedimentary-volcanic complex of the greenstone belt (GB). The Mezoarchean (∼2.88 Ga) metabasalts of the greenstone belt and Paleoproterozoic (∼1.86 Ga) gabbronorites and vein gabbros were formed at rifting and postcollisional extension, respectively. The Archean metabasites of the greenstone belt and enclaves in the TTG complex compositionally correspond to low-Ti tholeiitic basalts and basaltic andesites. The basaltic rocks are characterized by flat REE patterns [(La/Sm)n = 0.9–1.9], depletion in Nb relative to Th and La (Nb/Nb* = 0.4–1.1), and a wide range of mostly positive εNd(T) values (from +5.2 to –1.0). The enrichment of the basaltic andesite in incompatible elements, its Eu minimum, and negative εNd(T) values resulted from contamination by Paleoarchean TTG gneisses, that form the basement of GB. The Paleoproterozoic gabbronorites have high Mg# and extremely low concentrations of Ti and incompatible elements. The rocks are characterized by low (Nb/Y) (0.8–1.0), negative εNd(T) values (from 0 to –1.4), and weak enrichment in Th and LREE relative to Nb. The vein gabbros have low (La/Sm)n, positive εNd(T) values of +2.8 and +0.3, and a negative Nb anomaly (Nb/Nb* = 0.3–0.4). The trace element-composition of the amphibolites, gabbronorites, and gabbros and the results of geochemical modeling indicate that the parental melts were derived mainly from weakly depleted mantle sources. The Nd isotope composition of the Paleoproterozoic gabbroids resulted from the evolution of the heterogeneous Archean lithospheric mantle. Variations in the isotope and trace-element composition of the amphibolites reflect the initially depleted nature of the Mezoarchean mantle and its metasomatic alteration by fluids/melts, which occurred before its melting at ∼2.88 Ga. The geochemical and Nd isotopic characteristics of gabbronorites and gabbros indicate that the lithospheric mantle had become progressively more heterogeneous by the Paleoproterozoic due to preceding Archean processes. The variable depletion of both the Archean and the Paleoproterozoic mafic rocks in Nb relative to Th and La may be explained by mantle metasomatism and does not reflect the geodynamic settings of the mafic magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Mineral symbols: Amph—amphibole, Bt—biotite, Cpх—clinopyroxene, Mag—magnetite, Opх—orthopyroxene, Pl—plagioclase, and Qtz—quartz.

REFERENCES

  1. Anikina, E.V., Malitch, K.N., Belousova, E.A., et al., U–Pb age and Hf–Nd–Sr isotopic systematics of vein rocks of the Volkovsky Massif, Middle Urals, Russia, Geochem. Int., 2018, vol. 56, no. 3, pp. 199–210.

    Article  Google Scholar 

  2. Bédard, J., Parental magmas of the Nain plutonic suite anorthosites and mafic cumulates: a trace element modelling approach, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 747–771.

    Article  Google Scholar 

  3. Bennet, V.C., Compositional evolution of the mantle, Treatise on Geochemistry, 2003, vol. 2, pp. 493–519.

    Article  Google Scholar 

  4. Bibikova, E.V., Turkina, O.M., Kirnozova, T.I., and Fugzan, M.M., Ancient plagiogneisses of the Onot Block of the Sharyzhalgai metamorphic massif: isotopic geochronology, Geochem. Int., 2006, vol. 44, no. 3, pp. 310–316.

    Article  Google Scholar 

  5. Condie, K., Archean Greenstone Belts, Amsterdam: Elsevier, 1981.

    Google Scholar 

  6. Condie, K., Greenstones through time, Archean Crustal Evolution, Condie, K.C., Eds., Amsterdam: Elsevier, 1994, pp. 85–120.

    Google Scholar 

  7. Condie, K.C., High-field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes, Lithos, 2005, vol. 79, pp. 491–504.

    Article  Google Scholar 

  8. Condie, K.C., A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga?, Geosci. Front., 2018, vol. 9, pp. 51–60.

    Article  Google Scholar 

  9. Cook, Y.A., Sanislav, I.V., Hammerli, J., et al., A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton, Geosci. Front., 2016, vol. 7, pp. 911–926.

    Article  Google Scholar 

  10. Danyushevsky, L.V. and Plechov, P., Petrolog 3: integrated software for modeling crystallization processes, Geochem., Geophys., Geosyst., 2011, vol. 12, no. 7. https://doi.org/10.1029/2011GC003516

  11. Donskaya, T.V., Sal’nikova, E.B., Sklyarov, E.V., et al., Early Proterozoic postcollision magmatism at the southern flank of the Siberian Craton: new geochronological data and geodynamic implications, Dokl. Earth Sci., 2002, vol. 382, no. 5, pp. 125–128.

    Google Scholar 

  12. Donskaya, T.V., Assembly of the Siberian craton: constraints from Paleoproterozoic granitoids, Precambrian Res., 2020, vol. 348, p. 105869.

    Article  Google Scholar 

  13. Ernst, R.E., Hamilton, M.A., Soderlund, U., et al., Long-lived connection between Southern Siberia and northern Laurentia in the Proterozoic, Nature Geosci., 2016, vol. 9, pp. 464–469.

    Article  Google Scholar 

  14. Furnes, H., De Wit, M., and Robins, B., A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Onverwacht suite, Barberton greenstone belt, South Africa, Gondwana Res, 2013, vol. 23, pp. 403–428.

    Article  Google Scholar 

  15. Gladkochub D.P., Pisarevsky, S.A., Mazukabzov, A.M., et al., The first evidence of Paleoproterozoic late-collision basite magmatism in the near-Sayan salient of the Siberian craton basement, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 583–586.

    Article  Google Scholar 

  16. Goldstein, S.J. and Jacobsen, S.B., Nd and Sm isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  17. Gongal’sky, B.I., Sukhanov, M.K., and Gol’tsman, Yu.V., Sm-Nd isotope system of the Chinei anorthosite–gabbronorite pluton (Eastern Transbaikalia), Problemy geologii rudnykh mestorozhdenii, mineralogii, petrologii i geokhimii (Problems of Geology of Ore Deposits, Mineralogy, Petrology, and Geochemistry), Moscow: IGEM RAN, 2008, pp. 57–60.

    Google Scholar 

  18. Gosudarstvennaya geologicheskaya karta Rossiiskoi federatsii. M: 1 : 1000000 (tret’e pokolenie). List N-48-Irkutsk. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1000000 (Third Generation) Sheet N-49-Irkutsk. Explanatory Note), Galimova, T.F., Permyakov, S.A., Bobrovskii, V.T., et al., Eds., St-Peterburg: 2006, vol. 1.

  19. Hart, T.R., Gibson, H.L., and Lesher, C.M., Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu–Zn–Pb sulfide deposits, Econ. Geol., 2004, vol. 99, pp. 1003–1013.

    Article  Google Scholar 

  20. Hartlaub, R.P., Heaman, L.M., Ashton, K.E., and Chacko, T., The Archean Murmac Bay Group: avidence for a giant Archean rift in the Rae province, Canada, Precambrian Res., 2004, vol. 131, pp. 345–372.

    Article  Google Scholar 

  21. Hollings, P. and Kerrich, R., Trace element systematics of ultramafic and mafic volcanic rocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province, Precambrian Res., 1999, vol. 93, pp. 257–279.

    Article  Google Scholar 

  22. Hughes, H.S.R., McDonald, J., Goodenough, K.M., et al., Enriched lithospheric mantle keel below the Scottish margin of the North Atlantic Craton: evidence from the Palaeoproterozoic Scourie dyke swarm and mantle xenoliths, Precambrian Res., 2014, vol. 250, pp. 97–126.

    Article  Google Scholar 

  23. Humbert, F., Agangic, A., Massuyeau, M., et al., Rifting of the Kaapvaal craton during the early Paleoproterozoic: evidence from magmatism in the western Transvaal subbasin (South Africa), Precambrian Res., 2020, vol. 342, p. 105687.

    Article  Google Scholar 

  24. Humphris, S.E., The mobility of the rare earth elements in the crust, Rare Earth Element Geochemistry, Henderson, P., Eds., Amsterdam: Elsevier, 1984.

    Google Scholar 

  25. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  26. Jenner, F.E., Bennett, V.C., Nutman, A.P., et al., Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the southern edge of the Isua supracrustal belt, Chem. Geol., 2009, vol. 261, pp. 83–98.

    Article  Google Scholar 

  27. Kerrich, R. and Wyman, D.A., Review of developments in trace element fingerprinting of geodynamic settings and their implications for mineral exploration, Aust. J. Earth Sci., 1997, vol. 44, pp. 465–487.

    Article  Google Scholar 

  28. Komiya, T., Maruyama, S., Hirata, T., et al., Geochemistry of the oldest MORB and OIB in the Isua supracrustal belt, southern West Greenland: implications for the composition and temperature of Early Archean upper mantle, The Island Arc, 2004, vol. 13, pp. 47–72.

    Article  Google Scholar 

  29. Lesher, C.M., Goodwin, A.M., Campbell, I.H., and Gorton, M.P., Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior province, Canada, Can. J. Earth Sci., 1986, vol. 23, pp. 222–237.

    Article  Google Scholar 

  30. Levitskii, V.I., Mel’nikov, A.I., Reznitskii, L.Z., et al., Early Proterozoic postcollisional granitoids in southwestern Siberian Craton, Russ. Geol. Geophys., 2002, vol. 43, no. 8, pp. 717–731.

    Google Scholar 

  31. Ludden, J. and Gelinas, L., Archaean metavolcanics from the Rouyn–Noranda district, Abitibi greenstone belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints, Can. J. Earth Sci., 1982, vol. 19, pp. 2276–2287.

    Article  Google Scholar 

  32. Mekhonoshin, A.S., Ernst, R.E., Sederlund, U., et al., Relationship between platinum-bearing ultramafic–mafic intrusions and large igneous provinces (exemplified by the Siberian Craton), Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 822–833.

    Article  Google Scholar 

  33. Nikolaeva, I.V., Palesskii, S.V., Koz’menko, O.A., and Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma–mass spectrometry (ICP-MS), Geochem. Int., 2008, vol. 46, no. 10, pp. 1016–1022.

    Article  Google Scholar 

  34. Nozhkin, A.D. and Turkina, O.M., Geokhimiya granulitov (Geochemistry of Granulites), Novosibirsk: OIGGiM SO RAN, 1993.

  35. Nozhkin, A.D., Turkina, O.M., and Mel’gunov, M.S., Geochemistry of the metavolcanosedimentary and granitoid rocks of the Onot greenstone belt, Geochem. Int., 2001, vol. 39, no. 1, pp. 27–44.

    Google Scholar 

  36. Pearce, J.A. and Parkinson, I.J., Trace element models for mantle melting: application to volcanic arc petrogenesis, Prichard, H.M., Alabaster, T., Harris, N.B.W., and Neary, C.R., Eds., Magmatic processes and plate tectonics, Geol. Soc. London: Spec Publ., 1993, vol. 76, pp. 373–403.

  37. Pfänder, A., Jochum, K.P., Kozakov, I., et al., Coupled evolution of back-arc and arc-like mafic crust in the late-Neoproterozoic Agadagh Tes-Chem ophiolite, Central Asia: evidence from trace element and Sr–Nd isotope data, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 154–174.

    Article  Google Scholar 

  38. Polat, A., The geochemistry of Neoarchean (ca. 2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa subprovince, Canada: implications for petrogenetic and geodynamic processes, Precambrian Res., 2009, vol. 168, pp. 83–105.

    Article  Google Scholar 

  39. Polat, A., Kerrich, R., and Wyman, D.A., Geochemical diversity in oceanic komatiites and basalts from the Late Archean Wawa greenstone belts, Superior province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle, Precambrian Res., 1999, vol. 94, pp. 139–173.

    Article  Google Scholar 

  40. Polat, A., Frei, R., Appel, P.W.U., et al., The origin and compositions of Mesoarchean oceanic crust: evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland, Lithos, 2008, vol. 100, pp. 293–321.

    Article  Google Scholar 

  41. Poller, U., Gladkochub, D., Donskaya, T., et al., Timing of Early Proterozoic magmatism along the southern margin of the Siberian Craton (Kitoy area), Trances. Royal Sci. Edinb. Earth Sci., 2004, no. 95, pp. 215–225.

  42. Poller, U., Gladkochub, D., Donskaya, T., et al., Multistage magmatic and metamorphic evolution in the southern Siberian craton: Archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS, Precambrian Res., 2005, vol. 136, pp. 353–368.

    Article  Google Scholar 

  43. Puchtel, I.S., Haase, K.M., Hofmann, A.W., et al., Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an Early Proterozoic mantle plume beneath rifted Archean continental lithosphere, Geochem. Cosmochem. Acta, 1997, vol. 61, no. 6, pp. 1205–1222.

    Article  Google Scholar 

  44. Said, N. and Kerrich, R., Geochemistry of coexisting depleted and enriched Paringa basalts, in the 2.7 Ga Kalgoorlie terrane, Yilgarn craton, Western Australia: evidence for a heterogeneous mantle plume event, Precambrian Res., 2009, vol. 174, pp. 287–309.

    Article  Google Scholar 

  45. Sandeman, H.A., Hanmer, S., Tella, S., et al., Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt: a back-arc setting for the northwestern Hearne subdomain, western Churchill Province, Canada, Precambrian Res., 2006, vol. 144, pp. 140–165.

    Article  Google Scholar 

  46. Sandeman, H.A., Heaman, L.M., and LeCheminant, A.N., The Paleoproterozoic Kaminak dykes, Hearne craton, western Churchill Province, Nunavut, Canada: preliminary constraints on their age and petrogenesis, Precambrian Res., 2013, vol. 232, pp. 119–139.

    Article  Google Scholar 

  47. Saunders, A.D., Norry, M.J., and Tarney, J., Fluid influence on the trace element compositions of subduction zone magmas, Phil. Trans. Royal Soc., London: A, 1991, vol. 335, no. 1638.

  48. Shchipansky, A.A., Subduktsionnye i mantiino-plyumovye protsessy v geodinamike formirovaniya arkheiskikh zelenokamennykh poyasov (Subduction and Mantle–Plume Processes in the Geodynamic of the Formation of the Archean Greenstone Belt), Moscow: LKI, 2008. 543 s.

  49. Slabunov A.I. Geologiya i geodinamika arkheiskikh podvizhnykh poyasov (na primere Belomorskoi provintsii Fennoskandinavskogo shchita) (Geology and Geodynamics of Archean Mobile Belts: Evidence from the Belomorian Province of the Fennoscandian Shield), Petrozavodsk: KarNTs RAN, 2008.

  50. Smithies, R.H., Champion, D.C., and Sun, S.-S., Evidence for early LREE-enriched mantle source regions: diverse magmas from the c. 3.0 Ga Mallina basin, Pilbara craton, NW Australia, J. Petrol., 2004, vol. 45, pp. 1515–1537.

    Article  Google Scholar 

  51. Straub, S.M. and Zellmer, G.F., Volcanic arcs as archives of plate tectonic change, Gondwana Res., 2012, vol. 21, pp. 495–516.

    Article  Google Scholar 

  52. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Oceanic Basins. Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London, Spec. Publ., 1989, vol. 42, pp. 313–345.

  53. Szilas, K., Hoggmann, J.E., Hansmeier, C., et al., Sm-Nd and Lu-Hf isotope and trace-element systematics of Mesoarchaean amphibolites, Inner Ameralik fjord, southern West Greenland, Mineral. Mag., 2015, vol. 79, no. 4 P, pp. 857–876.

  54. Thurston, P.C., Igneous rock associations 19. Greenstone belts and granite-greenstone terranes: constraints on the nature of the Archean world, Geosci. Canada, 2015, vol. 42, pp. 437–484.

    Article  Google Scholar 

  55. Tomlinson, K.Y., Davis, D.W., Percival, J.A., et al., Mafic to felsic magmatism and crustal recycling in the Obonga Lake greenstone belt, western Superior province: evidence from geochemistry, Nd isotopes and U-Pb geochronology, Precambrian Res., 2002, vol. 114, pp. 295–325.

    Article  Google Scholar 

  56. Turkina, O.M., The amphibolite–plagiogneiss complex of the Onot Block, Sharyzhalgai Uplift: isotopic–geochemical evidence for the Early Archean evolution of the continental crust, Dokl. Earth Sci., 2004, vol. 399A, no. 9, pp. 1296–1300.

    Google Scholar 

  57. Turkina, O.M. and Nozhkin, A.D., Oceanic and riftogenic metavolcanic associations of greenstone belts in the northwestern part of the Sharyzhalgai uplift, Baikal region, Petrology, 2008, vol. 16, no. 5, pp. 468–491.

    Article  Google Scholar 

  58. Turkina, O.M., Berezhnaya, N.G., Larionov, A.N., et al., Paleoarchean tonalite–trondhjemite complex in the northwestern part of the Sharyzhalgai uplift (southwestern Siberian Craton): results of U-Pb and Sm-Nd study, Russ. Geol. Geophys., 2009, vol. 50, no. 1, pp. 15–28.

    Article  Google Scholar 

  59. Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., and Kapitonov, I.N., U-Pb (SHRIMP-II), Lu-Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay uplift: implications for the Neoarchaean evolution of the Siberian craton, Gondwana Res., 2012, vol. 21, pp. 801–817.

    Article  Google Scholar 

  60. Turkina, O.M., Kapitonov, I.N., and Sergeev, S.A., The isotope compositon of Hf in zircon from Paleoarchean plagiogneisses and plagiogranitoids of the Sharyzhalgai ulift (southern Siberian craton): implications for the continental–crust growth, Russ. Geol. Geophys., 2013, vol. 54, no. 3, pp. 272–282.

    Article  Google Scholar 

  61. Turkina, O.M., Sergeev, S.A., and Kapitonov, I.N., U-Pb age and Lu-Hf isotope composition of detrital zircon from metasedimentary rocks of the Onot greenstone belt (Sharyzhalgai uplift, southern Siberian craton), Russ. Geol. Geophys., 2014, vol. 55, no. 11, pp. 1249–1263.

    Article  Google Scholar 

  62. Turkina, O.M. and Kapitonov, I.N., Lu-Hf isotope composition of zircon as an indicator of the sources for Paleoproterozoic collisional granites (Sharyzhalgai uplift, Siberian craton), Russ. Geol. Geophys., 2017, vol. 58, no. 2, pp. 149–164.

    Article  Google Scholar 

  63. Turkina, O.M. and Kapitonov, I.N., The sources of Paleoproterozoic collisional granitoids (Sharyzhalgai uplift, southwestern Siberian craton): from lithospheric mantle to upper crust, Russ. Geol. Geophys., 2019, vol. 60, no. 4, pp. 414–434.

    Article  Google Scholar 

  64. Turkina, O.M., Sukhorukov, V.P., and Sergeev, S.A., Mesoarchean bimodal volcanic rocks of the Onot greenstone belt, southwestern Siberian craton: implications for magmatism in an extension/rift setting, Precambrian Res., 2020, vol. 343, 105731.

    Article  Google Scholar 

  65. Turkina, O.M., Izokh, A.E., and Nozhkin, A.D., Metabasalts of greenstone belt of the Bulun Terrane (southwestern Siberian Craton) as indicators of compositional and isotopic features of Archaean mantle, Petrology, 2021, vol. 29, no. 4, pp. 315–335.

    Article  Google Scholar 

  66. Workman, R.K. and Hart, A.R., Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 2005, vol. 231, pp. 53–72.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.A. Shchipansky and A.I. Slabunov for constructive comments, which helped us to improve the manuscript.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-05-00265. Data on the composition of the gabbroids were systematized under a government-financed research project for Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences. The Sm−Nd isotope analyses were conducted at the GEOANALITIK Center for the Collective Use of Analytical Equipment at Zavaritskii Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, in Yekaterinburg. The acquisition of additional equipment for the Center for the Collective Use and its further development were supported by the Ministry of Science and Higher Education of the Russian Federation under Agreement 075-15-2021-680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Turkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkina, O.M., Izokh, A.E., Lavrenchuk, A.V. et al. Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite–Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic. Petrology 30, 499–522 (2022). https://doi.org/10.1134/S0869591122040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122040063

Keywords:

Navigation