Skip to main content
Log in

Two High-Pressure Metamorphic Events in Early Precambrian Eclogites of the Gridino Area, Belomorian Province of the Fennoscandian Shield: Petrology and Geochronology

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Early Precambrian retrogressed eclogites are abundant in the Belomorian Province of the Fennoscandian Shield. This study reports unique features of retrogressed eclogites in the Samylino study area. The eclogites preserve a massive texture and the assemblage of Omp + Grt + Rt + Qz. The authors studied zoned crystals of garnet and omphacite with inclusions of diopside–plagioclase symplectites. The garnet crystals consist of three growth zones (central, intermediate, and marginal) and bear microinclusions of individual mineral grains and symplectites. These zones host three mineral assemblages of metamorphic minerals successively formed at different P–T conditions. The early assemblage includes Di–Pl symplectites, hornblende, and quartz, which were formed at T = 700–760°C and P = 12–14.5 kbar, and belongs to the first retrograde stage of the early eclogites. The second assemblage occurs in the intermediate zone of the zoned garnet crystals. This assemblage consists of Omp (Jd 32–36%) inclusions and Grt, makes up the intermediate zone, and was in equilibrium with Omp. These Omp and Grt crystallized at T = 710–820 °C and P = 14–16 kbar during later eclogite metamorphism. The third assemblage comprises garnet of the marginal zone with inclusions of Cpx, Pl, and Hbl. These minerals were formed at T = 650–730°C and P = 8.5–12 kbar, which are consistent with parameters of the high-pressure amphibolite facies of the latest retrograde metamorphism. The authors have distinguished four different age groups of zircons from the earlier and later eclogites based on U–Pb (SHRIMP II) dating: about 2.8, 2.7, 2.46, and 1.93 Ga. The early zircons form the cores of zircon grains, and many of them are interpreted as igneous, which crystallized in the Mesoarchean mafic protolith. All other groups of the zircons are of metamorphic origin, indicating polymetamorphic transformations of the early eclogites. The Neoarchean zircons contain microinclusions of omphacite and zoisite. However, we cannot reliably confirm the Neoarchean eclogite-facies metamorphism. Zircons dated at 1.93 Ga contain inclusions of omphacite, garnet, and zoisite. These grains were formed during the later eclogite-facies metamorphism. Thus, the Early Precambrian Belomorian eclogites are polymetamorphic rocks that bear two eclogite-facies mineral assemblages (according to petrological data). Structural and geochronological data also point to a polymetamorphic origin of the retrogression of the eclogites. Our geochronological data make it possible to date the second high-pressure (eclogite-facies) event as Paleoproterozoic (1.93 Ga) and the first one as presumably Neoarchean (ca 2.7 Ga).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Mineral symbols are according to (Whitney and Evans, 2010). Subscript indexes at Cpx and Omp symbols denote their Jd concentrations, superscript indexes denote the generations of the respective minerals, and subscript indexes near Pl symbols denote the concentration of the anorthite end member.

REFERENCES

  1. Babarina, I.I. and Sibelev, O.S., Deformation events in the Gridino zone, Belomorian Province, Fennoscandian Shield: relationships between mafic dike swarms and eclogite-bearing mélange, Int. Geol. Rev., 2015, vol. 57, pp. 1605–1616. https://doi.org/10.1080/00206814.2014.971079

    Article  Google Scholar 

  2. Balagansky, V.V., Main Stages of Tectonic Evolution of the Northeastern Baltic Shield in the Paleoproterozoic, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, St. Petersburg: St. Petersb. Gos. Univ., 2002.

  3. Balagansky, V.V., Shchipansky, A.A., Slabunov, A.I., et al., Archaean Kuru–Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: crustal architecture, timing and tectonic implications, Int. Geol. Rev., 2015, vol. 57, pp. 1543–1565.

    Article  Google Scholar 

  4. Balagansky, V.V., Maksimov, O.A., Gorbunov, I.A., et al., Archean and Paleoproterozoic eclogites and zoizitites in the Gridino area, Early Precambrian Eclogites of the Belomorian Province, Fennoscandian Shield. Field Guidebook, Petrozavodsk: Karelian Research Center of RAS, 2019, pp. 11–48.

    Google Scholar 

  5. Baldwin, J.A., Bowring, S.A., Williams, M.L., et al., Eclogites of the Snowbird tectonic zone: petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield, Contrib. Mineral. Petrol., 2004, vol. 147, pp. 528–548.

    Article  Google Scholar 

  6. Berezin, A.V., Travin, V.V., Marin, Yu.B., et al., New U–Pb and Sm–Nd ages and P–T estimates for eclogitization in the Fe-rich gabbro dyke in Gridino Area (Belomorian Mobile Belt), Dokl. Earth Sci., 2012, vol. 444, no. 6, pp. 760–765.

    Article  Google Scholar 

  7. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, pp. 445–522.

    Article  Google Scholar 

  8. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique, with petrological applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.

    Google Scholar 

  9. Bibikova, E.V., Slabunov, A.I., Bogdanova, S.V., et al., Early magmatism of the Belomorian Mobile Belt, Baltic Shield: lateral zoning and isotopic age, Petrology, 1999, vol. 7, no. 2, pp. 123–146.

    Google Scholar 

  10. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  Google Scholar 

  11. O’Brien, P.J., Eclogites and other high-pressure rocks in the Himalaya: a review, in Himalayan Tectonics: a Modern Synthesis, Trealor, P.J. and Searle, M.P., Eds., Geol. Soc. London. Special Publ., 2018, vol. 483, pp. 183–213.

  12. Brown, M. and Johnson, T., Secular change in metamorphism and the onset of global plate tectonics, Am. Mineral., 2018, vol. 103, pp. 181–196. https://doi.org/10.2138/am-2018-6166

    Article  Google Scholar 

  13. Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.

    Article  Google Scholar 

  14. Corfu, F., Hanchar, J.M., Hoskin, P.W., et al., Atlas of zircon textures, Rev. Mineral. Geochem., 2003, vol. 53, pp. 469–500.

    Article  Google Scholar 

  15. Daly, J.S., Balagansky, V.V., Timmerman, M.J., et al., The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere, Geol. Soc. London Mem., 2006, vol. 32, pp. 579–598.

    Article  Google Scholar 

  16. Dobretsov, N.L., Tenissen, K., and Smirnova, L.V., Structural and geodynamic evolution of eclogite-bearing metamorphic rocks of the Kokchetav massif (Kazakhstan), Geol. Geofiz., 1998, vol. 39, no. 12, pp. 1645–1666.

    Google Scholar 

  17. Furnes, H., Rosing, M., Dilek, Y., et al., Isua supracrustal belt (Greenland)-a vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology, Lithos, 2009, vol. 113, pp. 115–132.

    Article  Google Scholar 

  18. Glebovitskii, V.A., Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 2005.

  19. Glebovitskii, V.A., Miller, Yu.V., Drugova, G.M., et al., The structure and metamorphism of the Belomoride–Lapland collision zone, Geotectonics, 1996, vol. 30, no. 1, pp. 53–63.

    Google Scholar 

  20. Holland, T.J.B., The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C, Am. Mineral., 1980, vol. 65, pp. 129–134.

    Google Scholar 

  21. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343.

    Article  Google Scholar 

  22. Hoskin, P.W.O. and Schaltegger, Urs., The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  23. Imayama, T., Oh Ch. W., Baltybaev, Sh., et al., Paleoproterozoic high-pressure metamorphic history of the Salma eclogite on the Kola Peninsula, Russia, Lithosphere, 2017, vol. 9, no. 6, pp. 855–873.

    Article  Google Scholar 

  24. Joanny, V., van Roermund, H., and Lardeaux, J.M., The clinopyroxene/plagioclase sympiectite in retrograde eclogites: a potential geothermobarometer, Geol. Rundsch., 1991, vol. 80, pp. 303–320.

    Article  Google Scholar 

  25. Herwartz, D., Skublov S.G., Berezin, A.V., et al., First Lu–Hf Garnet Ages of Eclogites from the Belomorian Mobile Belt (Baltic Shield, Russia), Dokl. Earth Sci., 2012, vol. 443, no. 1, pp. 377–380.

    Article  Google Scholar 

  26. Kozlovskii, V.M., Travin, V.V., Savatenkov, V.M., et al., Thermobarometry of Paleoproterozoic Metamorphic Events in the Central Belomorian Mobile Belt, Northern Karelia, Russia, Petrology, 2020, vol. 28, no. 2, pp. 183–206.

    Article  Google Scholar 

  27. Kusky, T.M., Introduction, Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, Kusky, T.M., Eds., Amsterdam: Elsevier, 2004, vol. 13, pp. 1–34.

    Google Scholar 

  28. Larionov, A.N., Andreichev, V.A., and Gee, D.G., The Vendian alkaline igneous suite of northern Timan: Ion microprobe U-Pb zircon ages of gabbros and syenite, Geol. Soc. London Mem., 2004, vol. 30, no. 1, pp. 69–74.

    Article  Google Scholar 

  29. Li, X., Zhang, L., Wei, C., and Slabunov, A.I., Metamorphic P-T path and zircon U-Pb dating of Archean eclogite association in Gridino complex, Belomorian province, Russia, Precambrian Res., 2015, vol. 268, pp. 74–96. https://doi.org/10.1016/j.precamres.2015.07.009

    Article  Google Scholar 

  30. Likhanov, I.I., Metamorphic indicators for collision, extension, and shear zone geodynamic settings of the Earth’s crust, Petrology, 2020, vol. 28, no. 1, pp. 1–16.

    Article  Google Scholar 

  31. Liu, F., Zhang, L., Li, X., et al., The metamorphic evolution of Paleoproterozoic eclogites in Kuru–Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating, Precambrian Res., 2017, vol. 289, pp. 31–47.

    Article  Google Scholar 

  32. Loose, D. and Schenk, V., 2.09 Ga old eclogites in the Eburnian–Transamazonian orogen of southern Cameroon: Significance for Palaeoproterozoic plate tectonics, Precambrian Res., 2018, vol. 304, pp. 1–11.

    Article  Google Scholar 

  33. Ludwig, K.R., User’s manual for Isoplot, 3.00. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., No. 4, (2008).

  34. Maksimov, O.A., Geological–petrological features of eclogites from the Samylino area (Belomorian Province of the Fennoscandiah Shield), Tr. KarNTs Ross. Akad. Nauk, 2019a, no. 2, pp. 88–94.

  35. Maksimov, O.A., Geological–petrological features of eclogites from Stolbikha Island (Belomorian Provintce of the Fennoscandian Shield, Tr. Fersmanovskoi nauchnoi sessii GI KNTs RAN (Proc. Fersman’s Session of the Geological Institute of the Kola Science Center, Russian Academy of Sciences), 2019b, no. 16, pp. 356–359.

  36. Melnik, A.E., Skublov, S.G., Rubatto, D., et al., Garnet and zircon geochronology of the Paleoproterozoic Kuru–Vaara eclogites, northern Belomorian Province, Fennoscandian Shield, Precambrian Res., 2021, vol. 353, p. 106014.

    Article  Google Scholar 

  37. Mints, M.V., Belousova, E.A., Konilov, A.N., et al., Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia, Geology, 2010, vol. 38, pp. 739–742.

    Article  Google Scholar 

  38. Mints, M.V., Konilov, A.N., Dokukina, K.A., et al., The Belomorian eclogite province: unique evidence of Meso-Neoarchaean subduction and collision, Dokl. Earth Sci., 2010, vol. 434, no. 6, pp. 1311–1316.

    Article  Google Scholar 

  39. Mints, M.V. and Dokukina, K.A., Age of eclogites formed by the subduction of the Mesoarchaean oceanic crust (Salma, Belomorian Eclogite Province, eastern Fennoscandian Shield, Russia): A synthesis, Precambrian Res., 2020, vol. 350, p. 105879.

    Article  Google Scholar 

  40. Müller, S., Dziggel, A., Sindern, S., et al., Age and temperature–time evolution of retrogressed eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian orogen, South-East Greenland: Constrained from U-Pb dating, monazite, titanite and rutile, Precambrian Res., 2018, vol. 314, pp. 468–486.

    Article  Google Scholar 

  41. Myson, B.O. and Griffin, W.L., Pyroxene stoichiometry and the breakdown of omphacite, Am. Mineral., 1973, vol. 58, pp. 60–63.

    Google Scholar 

  42. Passchier, C.W. and Trouw, R.A.J., Microtectonics, Berlin: Springer Verlag, 1998.

    Book  Google Scholar 

  43. Perchuk, A.L. and Morgunova, A.A., Variable P-T paths and HP-UHP metamorphism in a Precambrian terrane, Gridino, Russia: Petrological evidence and geodynamic implications, Gondwana Res, 2014, vol. 25, pp. 614–629. https://doi.org/10.1016/j.gr.2012.09.009

    Article  Google Scholar 

  44. Powell, R., Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet–clinopyroxene geothermometer revised, J. Metamorph. Geol., 1985, vol. 3, no. 3, pp. 231–243.

    Article  Google Scholar 

  45. Reverdatto, V.V., Likhanov I.I., Polyansky, O.P., Sheplev, V.S., and Kolobov, V.Yu., The Nature and Models of Metamorphism, Springer Geology, 2019.

  46. Rubatto, D., Zircon: the metamorphic mineral, Rev. Mineral. Geochem., 2017, vol. 83, pp. 261–295.

    Article  Google Scholar 

  47. Saha, L., Pant, N.C., Pati, J.K., et al., Neoarchean high-pressure margarite–phengitic muscovite–chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand craton, north central India, Contrib. Mineral. Petrol., 2011, vol. 161, pp. 511–530.

    Article  Google Scholar 

  48. Shchipansky, A.A., Khodorevskaya, L.I., Konilov, A.N., et al., Eclogites from the Belomorian mobile belt (Kola Peninsula): geology and petrology, Russ. Geol. Geophys., 2012a, vol. 53, no. 1, pp. 1–21.

    Article  Google Scholar 

  49. Shchipansky, A.A., Khodorevskaya, L.I., and Slabunov, A.I., The geochemistry and isotopic age of eclogites from the Belomorian Belt (Kola Peninsula): evidence from subducted Archean oceanic crust, Russ. Geol. Geophys., 2012b, vol. 53, no. 3, pp. 262–280.

    Article  Google Scholar 

  50. Sizova, E.V., Gerya, T.V., and Brown, M., Contrasting styles of Phanerozoic and Precambrian continental collision, Gondwana Res., 2014, vol. 25, pp. 522–545. https://doi.org/10.1016/j.gr.2012.12.011

    Article  Google Scholar 

  51. Sklyarov, E.V., Gladkochub, D.P., Donskaya, T.V., et al., Metamorfizm i tektonika (Metamorphism and Tectonics), Moscow: Intermet inzhiniring, 2001.

  52. Skublov, S.G., Astaf’ev, B.Yu., Marin, Yu.B., et al., New data on the age of eclogites from the Belomorian Mobile Belt at Gridino Settlement area, Dokl. Earth Sci., 2011a, vol. 439, no. 2, pp. 1163–1170.

    Article  Google Scholar 

  53. Skublov, S.G., Berezin, A.V., and Mel’nik, A.E., Paleoproterozoic eclogites in the Salma Area, northwestern Belomorian Mobile Belt: composition and isotopic geochronologic characteristics of minerals and metamorphic age, Petrology, 2011b, vol. 19, no. 5, pp. 470–495.

    Article  Google Scholar 

  54. Skublov, S.G., Berezin, A.V., Mel’nik, A.E., et al., Protolith age of eclogites from the southern part of Pezhostrov Island, Belomorian Belt: protolith of metabasites as indicator of eclogitization time, Petrology, 2016, vol. 24, no. 6, pp. 594–607.

    Article  Google Scholar 

  55. Slabunov, A.I., Geologiya i geodinamika arkheiskikh podvizhnykh poyasov (na primere Belomorskoi provintsii Fennoskandinavskogo shchita) (Geology and Geodynamics of Archean Mobile Belts with Reference to the Belomorian Province of the Fennoscandian Shield), Petrozavodsk: KarNTs RAN, 2008.

  56. Slabunov, A.I., Burdyukh, E.V., and Babarina, I.I., Grain-size composition and area distribution of clastic constituent of the Gridino eclogite-bearing mélange, Geol. Polezn. Iskop. Karelii, Petrozavodsk: KarNTs RAN, 2007, pp. 27–34.

  57. Slabunov A.I., Volodichev O.I., Skublov S.G., et al., Main stages of the formation of Paleoproterozoic eclogitized gabbro–norite: evidence from U–Pb (SHRIMP) dating of zircons and study of their genesis, Dokl. Earth Sci., 2011, vol. 437, no. 2, pp. 396–400.

    Article  Google Scholar 

  58. Slabunov, A.I., Azimov, P.Ya., Glebovitskii, V.A., Zhang, L., and Kevlich, V.I., Archaean and Palaeoproterozoic migmatizations in the Belomorian Province, Fennoscandian Shield: petrology, geochronology, and geodynamic settings, Dokl. Earth Sci., 2016, vol. 467, pp. 259–263.

  59. Slabunov, A.I., Guo, J., Balagansky, V.V., et al., Early Precambrian crustal evolution of the Belomorian and Trans-North China orogens and supercontinents reconstruction, Geodynam. Tectonophys, 2017, vol. 8, no. 3, pp. 569–572.

    Article  Google Scholar 

  60. Slabunov A.I., Shchipanskii A.A., Stepanov V.S., et al., A tectonic remnant of the Mesoarchean oceanic lithosphere in the Belomorian Province, Fennoscandian Shield, Geotectonics, 2019, vol. 53, no. 2, pp. 205–230.

    Article  Google Scholar 

  61. Slabunov, A.I., Balagansky, V.V., Shchipansky, A.A., Mesoarchean to Paleoproterozoic crustal evolution of the Belomorian Province, Fennoscandian Shield, and the tectonic setting of eclogites, Russ. Geol. Geophys., 2021, vol. 62, no. 5, pp. 526–546. https://doi.org/10.2113/RGG20204266

    Article  Google Scholar 

  62. Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.

    Article  Google Scholar 

  63. Steiger, R.H. and Jager, E., Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.

    Article  Google Scholar 

  64. Stepanov, V.S. and Stepanova, A.V., Paleoproterozoic metagabbro from the Gridino area (Belomorian mobile belt), Geol. Polezn. Iskop. Karelii, 2006, vol. 9, pp. 55–71.

    Google Scholar 

  65. Stepanova, A.V. and Stepanov, V.S., Paleoproterozoic mafic dyke swarms of the Belomorian Province, eastern Fennoscandian Shield, Precambrian Res., 2010, vol. 183, pp. 602–616.

    Article  Google Scholar 

  66. Stern, R.J., The evolution of plate tectonics, Philos. Trans. Royal Soc., 2018, A 376. 20170406.

  67. Travin, V.V. and Kozlova, N.E., Local shear deformations as a cause of eclogitization: evidence from the Gridino Melange Zone, Belomorian Mobile Belt, Dokl. Earth Sci., 2005, vol. 405A, no. 9, pp. 1275–1278.

    Google Scholar 

  68. Volodichev, O.I., Belomorskii kompleks Karelii (geologiya i petrologiya) (Belomorian Complex of Karelia (Geology and Petrology), Leningrad: Nauka, 1990.

  69. Volodichev, O.I. and Kuzenko, T.I., Prograde and retrograde trends of metamorphic evolution of Archean eclogites and their geodynamic interpretation (Karelia, Gridino village area), Zap. Ross. Mineral. O-va, 2013, no. 3, pp. 28–51.

  70. Volodichev, O.I., Maksimov, O.A., Kuzenko, T.I., and Slabunov, A.I., Archean zircons with omphacite inclusions from eclogites of the Belomorian Province, Fennoscandian Shield: The first finding, Minerals, 2021, vol. 11, no. 10, 1029. https://doi.org/10.3390/min11101029

  71. Volodichev, O.I., Slabunov, A.I., Bibikova, E.V., et al., Archean eclogites in the Belomorian Mobile Belt, Baltic Shield, Petrology, 2004, vol. 12, no. 6, pp. 540–560.

    Google Scholar 

  72. Volodichev, O.I., Slabunov, A.I., Sibelev, O.S., et al., Geochronology, mineral inclusions, and geochemistry of zircons in eclogitized gabbronorites in the Gridino Area, Belomorian Province, Geochem. Int., 2012, vol. 50, no. 8, pp. 657–670.

    Article  Google Scholar 

  73. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  74. Wiedenbeck, M., Alle, P., Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslett., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  75. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Google Scholar 

  76. Windley, B.F., Kusky, T., and Polat, A., Onset of plate tectonics by the Eoarchean, Precambrian Res., 2021, vol. 35, p. 105980.

    Article  Google Scholar 

  77. Wu, Y. and Zheng, Y., Genesis of zircon and its constraints on interpretation of U-Pb age, Chinese Sci. Bull., 2004, vol. 49, no. 15, pp. 1554–1569.

    Article  Google Scholar 

  78. Yu, H.L., Zhang, L.F., Wei, C.J., et al., Age and P-T conditions of the Gridino eclogite in the Belomorian Province, Russia, J. Metamorph. Geol., 2017, vol. 35, pp. 855–869.

    Article  Google Scholar 

  79. Zhao, G., Cawood, P.A., Wilde, S.A., et al., High-pressure granulites (retrograded eclogites) from the Hengshan complex, North China Craton: petrology and tectonic implications, J. Petrol., 2001, pp. 1141–1170.

  80. Zinger, T.F., Gotze, J., Levchenkov, O.A., et al., Zircon in polydeformed and metamorphosed Precambrian granitoids from the white sea tectonic zone, Russia: morphology, cathodoluminescence, and U-Pb chronology, Int. Geol. Rev., 1996, vol. 38, pp. 57–73.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank O.I. Volodichev and A.V. Stepanova for discussing earlier variants of the manuscript. We also thank the reviewers, I.I. Likhanov (Novosibirsk) and E.B. Salnikova (St. Petersburg) for valuable comments that allowed us to notably improve the manuscript.

Funding

This study was carried out under government-financed research project AAAA-A18-118020290085-4 of the Karelian Research Center for the Institute of Geology. This publication is a contribution to Project 509 of the International Geoscience Program (IGCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Maksimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, O.A., Balagansky, V.V., Slabunov, A.I. et al. Two High-Pressure Metamorphic Events in Early Precambrian Eclogites of the Gridino Area, Belomorian Province of the Fennoscandian Shield: Petrology and Geochronology. Petrology 30, 147–170 (2022). https://doi.org/10.1134/S0869591122020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122020047

Keywords:

Navigation