Skip to main content
Log in

Fluid Regime of Gneiss Formation in the Meyeri Thrust Zone of the Northern Ladoga Area (South–Eastern Fennoscandian Shield)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Overthrusting of the allochthonous Svecofennian block onto the autochthonous block of the Karelian Craton margin caused compression and decompression in the Meyeri thrust zone of the Northern Ladoga area, which are recorded by the thermobarometry of mineral paragenesis in para- and orthogneisses. The highest calcium garnets in paragenesis with medium-calcium plagioclase, as well as biotite and/or muscovite yielded the mineral formation pressures up to 8–9 kbar, which is 2–3 kbar higher than metamorphic pressures typical of rocks surrounding the thrust zone. This is related to the additional pressure caused by the tectonic load on the rocks in the thrust zone. The subsequent evolution of the PT parameters of gneiss metamorphism indicates a simultaneous decrease in temperature and pressure until reaching the minimum values of Т = 500–550°С and Р = 1.6–3 kbar. The water activity in a metamorphic fluid was determined from mineral reactions with hydrous minerals within the range of ~0.20–0.44. Despite the narrow range, aH2O shows some variations at the present-day erosion level of the thrust zone, with the lowest value found in pre-muscovite garnet–biotite parageneses. An increase of water fraction in the metamorphic fluid and the appearance of muscovite parageneses did not lead to an increase in aH2O due to a simultaneous increase in the content of salt components in the fluid. The salt composition of the metamorphic fluid is revealed from the replacement of early minerals by late ones, the formation of which requires the presence of Na+ and K+ in the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Mineral abbreviations after (Kretz, 1983).

REFERENCES

  1. Aranovich, L.Ya. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  2. Aranovich, L.Ya. and Newton, R.C., Experimental determination of CO2–H2O activity–composition relations at 600–1000°C and 6–14 kbar by reversed decarbonation and dehydration reactions, Am. Mineral., 1999, vol. 84, pp. 1319–1332.

    Article  Google Scholar 

  3. Aranovich, L.Y., Zakirov, I.V., Sretenskaya, N.G., and Gerya, T.V., Ternary system H2O–CO2–NaCl at high P-T parameters: An empirical mixing model, Geochem. Int, 2010, vol. 48, pp. 446–455.

    Article  Google Scholar 

  4. Azimov, P.Ya. and Rizvanova, N.G., Evidence of Late Svecofennian elevated-pressure metamorphism in the North Ladoga zonal metamorphic complex, southeastern Fennoscandian Shield, Petrology, 2021, vol. 29, no. 3, pp. 300–314.

    Article  Google Scholar 

  5. Baltybaev, Sh.K. and Levchenkov, O.A., Volcanics in Svecofennides of the Ladoga region and results of U-Pb and Pb-Pb dating of rocks and minerals as a basis for correlation of Svecofennian events, Stratigraphy. Geol. Correlation, 2005, vol. 13, no. 2, pp. 119–133.

    Google Scholar 

  6. Baltybaev, Sh.K. and Vivdich, E.S., Evolution of the Meyeri Thrust Zone of the northern Ladoga Region (Republic of Karelia, Northwest Russia): PT conditions for the formation of mineral parageneses and geodynamic reconstructions, Geotectonics, 2021, vol. 55, no. 4, pp. 502–515.

    Article  Google Scholar 

  7. Baltybaev, Sh.K., Glebovitskii, V.A., Kozyreva, I.V., et al., The Meyeri Thrust: the main element of the suture at the boundary between the Karelian Craton and the Svecofennian Belt in the Ladoga Region of the Baltic Shield, Dokl. Earth Sci., 1996, vol. 348, no. 3, pp. 581–584.

    Google Scholar 

  8. Baltybaev, Sh.K., Glebovitskii, V.A., Kozyreva, I.V., et al., Geologiya i petrologiya svekofennid Priladozh’ya (Geology and Petrology of Svecofennides of the Ladoga Region), St. Petersburg: Izd-vo SPbGU, 2000.

  9. Baltybaev, Sh.K., Levchenkov, O.A., Berezhnaya, N.G., et al., Age and duration of Svecofennian plutono-metamorphic activity in the Ladoga Area, southeastern Baltic Shield, Petrology, 2004, vol. 12, no. 4, pp. 330–347.

    Google Scholar 

  10. Baltybaev, Sh.K., Levchenkov, O.A., and Levskii, L.K., Svekofennskii poyas Fennoskandii: prostranstvenno-vremennaya korrelyatsiya ranneproterozoiskikh endogennykh protsessov (Svecofennian Belt of Fennoscandia: Spatiotemporal Correlation of the Early Proterozoic Endogenous Processes), St. Petersburg: Nauka, 2009.

  11. Berman, R.G., Mixing properties of Ca–Mg–Fe–Mn garnets, Am. Mineral., 1990, vol. 75, pp. 328–344.

    Google Scholar 

  12. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 32, pp. 833–855.

    Google Scholar 

  13. Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 1–24.

    Article  Google Scholar 

  14. Berman, R.G., Aranovich, L.Ya., Rancourt, D.G., and Mercier, D.G., Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite, Am. Mineral., 2007, vol. 92, no. 1, pp. 139–150.

    Article  Google Scholar 

  15. Chacko, T., Kumar, G.R.R., and Newton, R.C., Metamorphic P–T conditions of the Kerala (South India) khondalite belt, a granulite facies supracrustal terrain, J. Geol., 1987, vol. 95, pp. 343–358.

    Article  Google Scholar 

  16. Chatterjee, N.D. and Froese, E.F., A thermodynamic study of the pseudobinary join muscovite–paragonite in the system KAlSi3O8–NaAlSi3O8–Al2O3–SiO2–H2O, Am. Mineral., 1975, vol. 60, pp. 985–993.

    Google Scholar 

  17. Circone, S. and Navrotsky, A., Substitution of [6,4]Al in phlogopite: high-temperature solution calorimetry, heat capacities, and thermodynamic properties of the phlogopite–eastonite join, Am. Mineral., 1992, vol. 77, pp. 1191–1205.

    Google Scholar 

  18. Cygan, G.L., Chou, I.-M., and Sherman, D.M., Reinvestigation of the annite = sanidine + magnetite + H reaction using the fH2 sensor technique, Am. Mineral., 1996, vol. 81, pp. 475–484.

    Article  Google Scholar 

  19. Dasgupta, S., Sengupta, P., Sengupta, Pr., et al., Petrology of gedrite-bearing rocks in mid-crustal ductile shear zones from the Eastern Ghats Belt, India, J. Metamorph. Geol., 1999, vol. 17, pp. 765–778.

    Article  Google Scholar 

  20. Eskola P. The problem of mantled gneiss domes, Qart. J. Geol. Soc. London, 1949, vol. 104, pp. 461–476.

    Article  Google Scholar 

  21. Feenstra, A. and Engi, M., An experimental study of the Fe–Mn exchange between garnet and ilmentite, Contrib. Mineral. Petrol., 1998, vol. 131, pp. 379–392.

    Article  Google Scholar 

  22. Feenstra, A. and Peters, T., Experimental determination of activities in FeTiO3–MnTiO3 ilmenite solid solution by redox reversals, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 109–120.

    Article  Google Scholar 

  23. Fuhrman, M.L. and Lindsley, D.H., Ternary-feldspar modeling and thermometry, Am. Mineral., 1988, vol. 73, pp. 201–215.

    Google Scholar 

  24. Geologicheskoe razvitie glubinnykh zon podvizhnykh poyasov (Severnoe Priladozh’e) (Geological Evolution of Deep-Seated Zones of the Mobile Belts (Northern Ladoga Area), Ed. by N. G. Sudovikov, Leningrad: Nauka, 1970.

  25. Glazner, A.F. and Bartley, J.M., Volume loss, fluid flow and the state of strain in extensional mylonites from the Central Mojave Desert, California, J. Struct. Geol., 1991, vol. 13, pp. 587–594.

    Article  Google Scholar 

  26. Goddard, J.V. and Evans, J.P., Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A, J. Struct. Geol., 1995, vol. 17, no. 4, pp. 533–547.

    Article  Google Scholar 

  27. Gorokhov I.M., Kuznetsov A.B., Azimov P.Ya., Dubinina E.O., et al., Sr and C isotope chemostratigraphy of the Paleoproterozoic metacarbonate rocks of the Sortavala Group: Fennoscandian Shield, northern Ladoga Area, Stratigraphy. Geol. Correlation, 2021, vol. 29, no. 2, pp. 121–139.

    Article  Google Scholar 

  28. Gulbin, Yu.L., P–T paths and modeling of evolution of mineral composition of metapelites of the Northern Ladoga area in the MnNCKFMASH system, Zap. Ross. Mineral. O-va, 2014, vol. 143, no. 6, pp. 34–53.

    Google Scholar 

  29. Haar, L., Gallagher, J.S., and Kell, G.S., NBS/NRC Steam Tables, New York: Hemisphere Pub. Corp., 1984.

    Google Scholar 

  30. Holdaway, M.J., Stability of andalusite and the aluminum silicate phase diagram, Am. J. Sci., 1971, vol. 271, pp. 97–131.

    Article  Google Scholar 

  31. Irwin, W.P. and Barnes, I., Tectonic relations of carbon-dioxide discharges and earthquakes, J. Geophys. Res., 1980, vol. 85, pp. 3115–3121.

    Article  Google Scholar 

  32. Karhu, J.A., Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield, Geol. Surv. Finl., Bull., 1993, vol. 371, pp. 1–87.

    Google Scholar 

  33. Kazakov, A.N., Deformatsii i nalozhennaya skladchatost' v metamorficheskikh kompleksakh (Deformations and Superimposed Folding in Metamorphic Complexes), Leningrad: Nauka, 1976.

  34. Khazov, R.A., Geologicheskie osobennosti olovyannogo orudeneniya Severnogo Priladozh’ya (Geologocal Features of Tin Mineralization of the Northern Ladoga Area), Leningrad: Nauka, 1973.

  35. Kitsul, V.I., Petrologiya karbonatnykh porod ladozhskoi formatsii (Petrology of Carbonate Rocks of the Ladoga Formation), Leningrad: Nauka, 1963.

  36. Korikovsky, S.P., Fatsii metamorfizma metapelitov (Metamorphic Facies of Metapelites), Moscow: Nauka, 1979.

  37. Kretz, R., Symbols of rock-forming minerals, Am. Mineral., 1983, vol. 68, pp. 277–279.

    Google Scholar 

  38. Kulakovsky, A.L., Morozov, Yu.A., Smul’skaya, A.I., Precambrian stress-metamorphism and stress-metamorphic rocks in the Ladoga area, Tr. Karel’skogo NTs RAS, 2015, no. 7, pp. 19–35.

  39. Kuznetsov, A.B., Gorokhov, I.M., Azimov, P.Ya., andDubinina, E.O., Sr- and C-chemostratigraphy potential of the Paleoproterozoic sedimentary carbonates under medium-temperature metamorphism: the Ruskeala Marble, Karelia, Petrology, 2021, vol. 29, no. 2, pp. 175–194.

    Article  Google Scholar 

  40. Ladozhskaya proterozoiskaya struktura (geologiya, glubinnoe stroenie i minerageniya) (Ladoga Proterozoic Structure: Geology, Deep Structure, and Metallogeny), Sharov, N.V, Eds., Petrozavodsk: KarNTs RAS, 2020.

  41. Losh, S., Fluid–rock interaction in an evolving ductile shear zone and across the brittle–ductile transition, Central Pyrenees, France, Am. J. Sci., 1989, vol. 289, pp. 600–648.

    Article  Google Scholar 

  42. Mader, U.K. and Berman, R.G., An equation of state for carbon dioxide to high pressure and temperature, Am. Mineral., 1991, vol. 76, pp. 1547–1559.

    Google Scholar 

  43. Matrenichev, V.A., Vrevsky, A.B., Sergeev, S.A., and Matukov, D.A., The Ludicovian–Kalevian boundary in the northern Ladoga Region: geological relations and isotopic age, Dokl. Earth Sci., 2006, vol. 407A, no. 3, pp. 388–392.

    Article  Google Scholar 

  44. McMullin, D.W., Berman, R.A., and Greenwood, H.J., Calibration of the SGAM thermometer for pelitic rocks using data from phase–equilibrium experiments and natural assemblages, Can. Mineral., 1991, vol. 29, pp. 889–908.

    Google Scholar 

  45. Migmatizatsiya i granitoobrazovanie v razlichnykh termodinamicheskikh rezhimakh (Migmatization and Granite Formation under Different Thermodynamic Modes), Leningrad: Nauka, 1985.

  46. Miller, S.A., The role of fluids in tectonic and earthquake processes, Adv. Geophys., 2013, vol. 54, pp. 1–46.

    Article  Google Scholar 

  47. Myskova, T.A., Mil’kevich, R.I., and L’vov, P.A., U-Pb geochronology of zircons from metasediments of the Ladoga Group (north Ladoga Region, Baltic Shield), Stratigraphy. Geol. Correlation, 2012, vol. 20, no. 2. S. 166–178.

    Article  Google Scholar 

  48. Nagaitsev, Yu.V., Petrologiya metamorficheskikh porod ladozhskogo i belomorskogo kompleksov (Petrology of Metamorphic Rocks of the Ladoga and Belomorian Complexes), Leningrad: Izd-vo Leningr. Univ., 1974.

  49. Newton, R.C., Metamorphic fluids in the deep crust, Ann. Rev. Earth Planet. Sci., 1989, vol. 17, pp. 385–412.

    Article  Google Scholar 

  50. O’Hara, K.D., Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting, North Carolina, USA, Tectonophysics, 1988, vol. 156, pp. 21–36.

    Article  Google Scholar 

  51. O’Hara, K.D., State of strain in mylonites from the western Blue Ridge province, southern Appalachians: the role of volume loss, J. Struct. Geol., 1990, vol. 12, pp. 419–430.

    Article  Google Scholar 

  52. O’Hara, K.D., Fluid–rock interaction in crustal shear zones: a directed percolation approach, Geology, 1994, vol. 22, pp. 843–846.

    Article  Google Scholar 

  53. Powel, R. and Holland, T.J., An internally consistent thermodynamic dataset with uncertainties and correlations, J. Metamorph. Geol., 1998, no. 6, pp. 173–204.

  54. Predovskii, A.A., Petrov, V.P., and Belyaev, O.A., Geokhimiya rudnykh elementov metamorficheskikh serii dokembriya (na primere Severnogo Priladozh’ya) (Geochemistry of Ore Elements of the Precambrian Metamorphic Series: Evidence from the Northern Ladoga Area), Leningrad: Nauka, 1967.

  55. Qiana, J., Yina, Ch., Weic, Ch., and Zhang, J., Two phases of Paleoproterozoic metamorphism in the Zhujiafang ductile shear zone of the Hengshan Complex: insights into the tectonic evolution of the North China Craton, Lithos, 2019, vol. 330, pp. 35–54.

    Article  Google Scholar 

  56. Radhika, U.P. and Santosh, M., Shear-zone hosted graphite in southern Kerala, India: Implications for CO2 infiltration, J. Southeast Asian Earth Sci., 1996, vol. 14, pp. 265–273.

    Article  Google Scholar 

  57. Santosh, M. and Wada, H., A carbon isotope study of graphites from the Kerala Khondalite Belt, southern India, J. Geol., 1993, vol. 101, pp. 643–650.

    Article  Google Scholar 

  58. Shuldiner, V.I., Baltybaev, Sh.K., and Kozyreva, I.V., Metamorphic evolution of garnet-bearing granulites in the western Ladoga Area, Petrology, 1997, vol. 5, no. 3, pp. 223–245.

    Google Scholar 

  59. Shul’diner, V.I., Levchenkov, O.A., Yakovleva, S.Z., et al., The Late Karelian in the stratigraphic scale of Russia: determination of its lower boundary and regional units in the stratotype area, Stratigraphy. Geol. Correlation, 2000, vol. 8, no. 6, pp. 544–556.

    Google Scholar 

  60. Sinha, A.K., Hewitt, D.A., and Rimstidt, J.D., Fluid interaction and element mobility in the development of ultramylonites, Geology, 1986, vol. 14, pp. 883–886.

    Article  Google Scholar 

  61. Sinitsa, S.M., Cupolas of the Northern Ladoga area and relationships of their granite gneiss cores with laminated shells, Izv. AN SSSR. Ser. Geol., 1984, no. 9, pp. 15–23.

  62. Sudovikov, N.G., Tektonika, metamorfizm, migmatizatsiya i granitizatsiya porod ladozhskoi formatsii (Tectonics, Metamorphism, Migmatization, and Granitization of Rocks of the Ladoga Formation), Moscow-Leningrad: Izd-vo AN SSSR, 1954.

  63. Svetov, A.P. and Sviridenko, L.P., Stratigrafiya dokembriya Karelii. Sortaval’skaya seriya svekokarelid Priladozh’ya (Precambrian Stratigraphy of Karelia. Sortavala Group of Svecokarelides of the Ladoga Area), Petrozavodsk: Karel’skii NTs RAN, 1992.

  64. Svetov, A.P., Sviridenko, L.P., and Ivashchenko, V.I., Vulkano-plutonizm svekokarelid Baltiiskogo shchita (Volcanoplutonic Svecokarelides of the Baltic Shield), Petrozavodsk: KNTs, 1990.

  65. Tannocka, L., Herweghb, M., Bergerb, A., et al., The effects of a tectonic stress regime change on crustal-scale fluid flow at the Heyuan geothermal fault system, south china, Tectonophysics, 2020, vol. 781, pp. 1–17.

    Google Scholar 

  66. Thompson, A.B., Dehydration melting of pelitic rocks and the generation of H2O–undersaturated granitic luquids, Am. J. Sci., 1982, pp. 1567–1595.

  67. Thompson, A.B., Clockwise P-T paths for crustal melting and H2O recycling in granite source regions and migmatite terrains, Lithos, 2001, vol. 56, no. 1, pp. 33–45.

    Article  Google Scholar 

  68. Tobisch, O.T., Barton, M.D., Vernon, R.H., and Paterson, S.R., Fluid-enhanced deformation: transformation of granitoids to banded mylonites, Sierra Nevada, California and southeastern Australia, J. Struct. Geol., 1991, vol. 13, pp. 1137–1156.

    Article  Google Scholar 

  69. Trap, P., Faure, M., Lin, W., and Monié, P., Late Paleoproterozoic (1900–1800 Ma) nappe-stacking and polyphase deformation in the Hengshan–Wutaishan area: implications for the understanding of the Trans–North China Belt, North China Craton, Precambrian Res., 2007, vol. 156, pp. 85–106.

    Article  Google Scholar 

  70. Tugarinov, A.I. and Bibikova, E.V., Geokhronologiya Baltiiskogo shchita po dannym tsirkonometrii (Geochronology of the Baltic Shield Based on Zirconometry Data), Moscow: Nauka, 1980.

  71. Velikoslavinsky, D.A., Sravnitel’naya kharakteristika regional’nogo metamorfizma umerennykh i nizkikh davlenii (A Comparative Characteristics of Regional Medium- and Low-Pressure Metamorphism), Leningrad: Nauka, 1972.

  72. Vrevsky, A.B., The Ludicovian of the Raahe–Ladoga Zone of the Fennoscandian Shield (isotope-geochemical composition and geodynamic nature), Russ. Geol. Geophys., 2021, vol. 62, no. 10, pp. 1089–1106.

    Article  Google Scholar 

  73. Wegmann, C.E., Uber die tektonik der jungeren faltung in ostfinnland, Fennia, 1928, vol. 50, no. 16, pp. 1–22.

    Google Scholar 

  74. Williams, M.L. and Grambling, J.A., Manganese, ferric iron, and the equilibrium between garnet and biotite, Am. Mineral., 1990, vol. 75, pp. 886–908.

    Google Scholar 

  75. Zhang, J., Zhao, G.C., Li, S.Z., et al., Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen, J. Struct. Geol, 2007, vol. 29, pp. 933–949.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.Ya. Aranovich for the critical comments, which significantly improved and supplemented our work.

Funding

This study was carried out under government-financed research project no. FMUW-2022-0002 of the Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Baltybaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltybaev, S.K., Vivdich, E.S., Galankina, O.L. et al. Fluid Regime of Gneiss Formation in the Meyeri Thrust Zone of the Northern Ladoga Area (South–Eastern Fennoscandian Shield). Petrology 30, 171–197 (2022). https://doi.org/10.1134/S0869591122020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122020023

Keywords:

Navigation