Skip to main content
Log in

Petrology and Mineral Chemistry of the Oligocene–Miocene Qazan Granitoids from Central Urumieh-Dokhtar Magmatic Arc, Iran: Implications for the Neo-Tethyan Subduction

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Urumieh-Dokhtar Magmatic Arc (UDMA) appears as a nearly linear suite of magmatic rocks that extends from NW to SE Iran parallel with the orogenic suture of the Zagros Fold-Thrust belt. The Qazan granitoids formed along the central part of UDMA and span a wide range of felsic rocks, including granodiorite, quartz diorite, diorite, and monzogranite. Their common rock-forming minerals are mainly quartz, feldspar, amphibole, biotite and clinopyroxene. These granitoids contain abundant mafic microgranular enclaves (MME). Bulk-rock major and trace element compositions returned a relatively low SiO2 content (ca. 51–55 wt %) and high Mg# (ca. 40–50) for MME samples, potentially reflecting a mantle-derived origin. The granitoid host rocks are metaluminous (A/CNK = ca. 0.7–1) I-type rocks with arc-related calc-alkaline affinity. They yield higher SiO2 contents with a comparatively larger variation (ca. 57–66 wt %) and lower Mg# (ca. 35–48), consistent with derivation from partial melting of lower continental crust. Mixing of two contrasting mafic (sourced from an enriched subcontinental lithospheric mantle wedge) and felsic (derived from lower continental crust) melts in the Neo-Tethyan subduction-related oxidizing system has resulted in generation of Qazan granitoid melts. Thermometry of Qazan intrusive rocks indicates that the ascending melt was crystallized at 1200–1100°C in lithospheric mantle to lower continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Abbasi, S., Tabatabaei Manesh, S.M., Karimi, S., and Parfenova, O.V., Relative contributions of crust and mantle to generation of Oligo-Miocene medium-K calc-alkaline I‑type granitoids in a subduction setting—a case study from the Nabar pluton, Central Iran, Petrology, 2014, vol. 22, pp. 310–328.

    Article  Google Scholar 

  2. Abdel-Rahman, A.F.M., Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas, J. Petrol., 1994, vol. 35, pp. 525–541.

    Article  Google Scholar 

  3. Aistov, L., Melnikov, B., Krivyakin, B., and Morozov, L., Geology of the Khur Area (Central Iran), Explanatory Text of the Khur Quadrangle Map, 1:250,000, V/O Technoexport Report TE/No. 20. Tehran, Iran: Geol. Sur. Iran, 1984.

  4. Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H., Highpotassium, calcalkaline I-type intrusionism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany), Lithos, 2000, vol. 50, pp. 51–73.

    Article  Google Scholar 

  5. Anderson, J.L. and Smith, D.R., The effects of temperature and ƒO2 on the Al-in-hornblende barometer, Am. Mineral., 1995, vol. 80, pp. 549–559.

    Article  Google Scholar 

  6. Anderson, J.L., Barth, A.P., and Mazdab, J.L.W.F., Thermometers and thermobarometers in granitic systems, Rev. Mineral. Geochim., 2008, vol. 69, pp. 121–142.

    Google Scholar 

  7. Asiabanha, A. and Foden, J., Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran, Lithos, 2012, vol. 148, pp. 98–111.

    Article  Google Scholar 

  8. Barbarin, B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, 1999, vol. 46, pp. 605–626.

    Article  Google Scholar 

  9. Barbarin, B., Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts, Lithos, 2005, vol. 80, pp. 155–177.

    Article  Google Scholar 

  10. Le Bas, M.J., The role of aluminum in igneous clinopyroxenes with relation to their parentage, Amer. J. Sci., 1962, vol. 260.

  11. Berberian, M. and King, G.C.P., Towards a palaeogeography and tectonic evolution of Iran, Can. J. Earth Sci., 1981, vol. 18, pp. 210–265.

    Article  Google Scholar 

  12. Bina, M.M. and Bucur, I., Prevo,t M., Meyerfeld, Y., Daly, L., Cantagrel, J.M., and Mergoil, J., Palaeomagnetism, petrology and geochronology of tertiary magmatic and sedimentary units from Iran, Tectonophysics, 1986, vol. 121, pp. 303–329.

    Article  Google Scholar 

  13. Brown, G.C., Thorpe, R.S., and Webb, P.C., The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources, J. Geol. Soc. London, 1984, vol. 141, pp. 413–426.

    Article  Google Scholar 

  14. Chaharlang, R. and Ghorbani, M.R., A hidden crust beneath the central Urumieh-Dokhtar Magmatic Arc revealed by inherited zircon ages, Tafresh, Iran, Geol. J., 2020, vol. 55, pp. 3770–3781.

    Article  Google Scholar 

  15. Chappell, B.W., Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites, Lithos, 1999, vol. 46, pp. 535–551.

    Article  Google Scholar 

  16. Chappell, B.W. and White, A.J.R., I- and S-type granites in the Lachlan fold belt, Trans. R. Soc. Edinb. Earth Sci., 1992, vol. 83, pp. 1–26.

    Google Scholar 

  17. Chavideh, M., Tabatabaei Manesh, S.M., and Mackizadeh, M.A., Petrology of skarns in the north and the southwest of Qazan (South Qamsar) with emphasis on the mineral chemistry of garnet and pyroxene, Petrology, 2018, vol. 9, pp. 111–132 [in Persian].

    Google Scholar 

  18. Chen, S., Niu, Y., Sun, W., Zhang, Y., Li, J., Guo, P., and Sun, P., On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: Evidence from the Baojishan pluton in the North Qilian Orogen, China, Mineral. Petrol., 2015, vol. 109, pp. 577–596.

    Article  Google Scholar 

  19. Dan, W., Wang, Q., Wang, X.-C., Liu, Y., Wyman, D.A., and Liu, Y.S., Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces, Lithos, 2015, vol. 230, pp. 133–145.

    Article  Google Scholar 

  20. Deer, W.A., Howie, R.A., and Zussman, J., An Introduction to the Rock-Forming Minerals, New York: Longman, 1992, vol. 1.

    Google Scholar 

  21. Dessimoz, M., Müntener, O., and Ulmer, P., A case for hornblende dominated fractionation of arc magmas: the chelan complex (Washington Cascades), Mineral. Petrol., 2012, vol. 163, pp. 11–685.

    Google Scholar 

  22. Dioh, E., Beziat, D., Gregoire, M., and Debat, P., Origin of rare earth element variations in clinopyroxene from intrusion and associated volcanic rocks from the Foulde basin, Northern Kedougou inlier, Senegal, West Africa, Am. Mineral., 2009, vol. 21, pp. 1029–1043.

    Google Scholar 

  23. Elmas, A., Koralay, E., Duru, O., and Schmidt, A., Geochronology, geochemistry, and tectonic setting of the Oligocene magmatic rocks (Marmaros Magmatic Assemblage) in Gokceada Island, northwest Turkey, Int. Geol. Rev., 2016, vol. 59, pp. 420–447.

    Article  Google Scholar 

  24. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., and Ellis, D.J., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  Google Scholar 

  25. Gao, P., Zhao, Z.F., and Zheng, Y.F., Petrogenesis of Triassic granites from the Nanling Range in South China: implications for geochemical diversity in granites, Lithos, 2014, vol. 210–211, pp. 40–56.

  26. Ghasmie, A., and Tabatabaei Manesh, S.M., Geochemistry and petrogenesis of Ghohroud Igneous Complex (Urumieh-Dokhtar zone): Evidence for Neotethyan subduction during the Neogene, Arab. J. Geosci., 2015, vol. 8, pp. 9599–9623.

    Article  Google Scholar 

  27. Harald, B. and Galliard, F., Geochemical aspects of melts: Volatiles and redox behavior, J. Elements, 2006, vol. 2, pp. 275–280.

    Article  Google Scholar 

  28. Harker, A., The Natural History of Igneous Rocks, London: Methenu, 1909.

    Google Scholar 

  29. Kananian, A., Sarjoughian, F., Nadimi, A., Ahmadian, J., and Ling, W., Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh Dokhtar Magmatic Arc (Iran): implications for source regions and magmatic evolution, J. Asian. Earth Sci., 2014, vol. 90, pp. 137–148.

    Article  Google Scholar 

  30. Karslia, O., Aydinb, F., and Sadiklarb, M.B., The morphology and chemistry of K-feldspar megacrysts from Ikizdere Pluton: Evidence for acid and basic magma interactions in granitoid rocks, NE-Turkey, Chem. Erde. Geochem., 2004, vol. 64, pp. 155–170.

    Article  Google Scholar 

  31. Kazemi, K., Kananian, A., Xiao, Y., and Sarjoughian, F., Petrogenesis of Middle-Eocene granitoids and their mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas, Geosci. Front., 2019, vol. 10, pp. 705–723.

    Article  Google Scholar 

  32. Khodami, M., Pb isotope geochemistry of the late Miocene-Pliocene volcanic rocks from Todeshk, the central part of the Urumieh-Dokhtar magmatic arc, Iran: Evidence of an enriched mantle source, Journal E.S.C.I., 2019, pp. 128.

    Google Scholar 

  33. Leake, E.B., Wooley, A.R., Arps, C.E.S., Birch, W.D., and Gilbert, M.C., Nomenclature of amphiboles report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names, Eur. J. Mineral., 1997, vol. 9, pp. 623–651.

    Article  Google Scholar 

  34. Lu, Y.H., Zhao, Z.F., and Zheng, Y.F., Geochemical constraints on the source nature and melting conditions of Triassic granites from South Qinling in central China, Lithos, 2016, vol. 264, pp. 141–157.

    Article  Google Scholar 

  35. Ma, X.H., Zhu, W.P., Zhou, Z.H., and Qiao, S.L., Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China, Earth Sci., 2017, vol. 144, pp. 261–286.

    Google Scholar 

  36. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  37. Maulana, A., Watanabe, K., Imai, A., and Yonezu, K., Geochemical signature of granitic rocks from Sulawesi, Indonesia: evidence of Gondwana involvement, Mineral. Mag., 2012, vol. 76, pp. 20–81.

    Google Scholar 

  38. Middlemost, E.A.K., Naming materials in the magma/igneous rock system, Earth Sci. Rev., 1994, vol. 37, pp. 215–224.

    Article  Google Scholar 

  39. Miskovic, A. and Francis, D., Interaction between mantle-derived and crustal calcalkaline magmas in the petrogenesis of the Paleocene Sifton range volcanic complex, Yukon, Canada, Lithos, 2006, vol. 87, pp. 104–134.

    Article  Google Scholar 

  40. Moita, P., Santos, J.F., Pereira, M.F., Costa, M.M., and Corfu, F., The quartz-dioritic Hospitais intrusion (SW Iberian Massif) and its mafic microgranular enclaves - Evidence for mineral clustering, Lithos, 2015, vol. 224, pp. 78–100.

    Article  Google Scholar 

  41. Molina, J., Scarrow, J., Montero, P.G., and Bea, F., High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalic-hybrid melts during evolution of Variscan basic - ultrabasic magmatism of Central Iberia, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 69–98.

    Article  Google Scholar 

  42. Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., and Gottardi, G., Nomenclature of pyroxenes, Am. Mineral., 1988, vol. 73, pp. 1123–1133.

    Google Scholar 

  43. Nabelek, P.I., Petrogenesis of leucogranites in collisional orogens. In: Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments, Janousek, V., Bonin, B., Collins, W.J., Farina, F. and Bowden, P., Eds., Geol. Soc. London Spec. Publ., 2019, vol. 491, no. 1, 179.

  44. Nachit, H., Ibhi, A., Abia, E.H., and Ohoud, M.B., Discrimination between primary magmatic biotites reequilibrated biotites and neoformed biotites, Geomaterials (Mineral.), Copmtes Rendus. Geosci., 2005, vol. 337, pp. 1415–1420.

    Article  Google Scholar 

  45. Nakamura, N., Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites, Geochim. Cosmochim. Acta, 1974, vol. 38, pp. 757–775.

    Article  Google Scholar 

  46. Patino Douce, A.E., What do experiments tell us about the relative contributions of crust and mantle to the origins of granitic magmas? In: Understanding Granites: Integrating New and Classical Techniques, Castro, A., Fernandez, C., Vigneresse, J.L., Eds., Geol. Soc. London Spec. Publ., 1999, vol. 168, pp. 55–75.

  47. Pearce, J.A., Sources and settings of granitic rocks, Episodes, 1996, vol. 19, pp. 120–125.

    Article  Google Scholar 

  48. Pearce, J.A. and Parkinson, I.J., Trace element models for mantle melting: Application to volcanic arc petrogenesis, Geol. Soc. London, Spec. Publ., 1993, vol. 76, pp. 373–403.

    Article  Google Scholar 

  49. Pietranik, A. and Koepke, J., Plagioclase transfer from a host granodiorite to mafic microgranular enclaves: Diverse records of magma mixing, Mineral. Petrol., 2014, vol. 108, pp. 681–694.

    Article  Google Scholar 

  50. Putirka, K., Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations, Am. Mineral., 2005, vol. 90, pp. 336–346.

    Article  Google Scholar 

  51. Putirka, K., Thermometers and Barometers for Volcanic Systems, Rev. Mineral. Geochim., 2008, vol. 69, pp. 61–120.

    Google Scholar 

  52. Putirka, K., Johnson, M., Kinzler, R., and Walker, D., Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar, Contrib. Mineral. Petrol., 1996, vol. 123. pp. 92–108.

    Article  Google Scholar 

  53. Radfar, J. and Mahabadi, S., Explanatory text of the Kashan. Quadrangle Map 1:100000, № E6, Tehran: Geol. Surv. Iran, 1998.

    Google Scholar 

  54. Rapp, R.P. and Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust mantle recycling, J. Petrol., 1995, vol. 36, pp. 891–931.

    Article  Google Scholar 

  55. Rickwood, P.C., Boundary lines within petrologic diagrams which use oxides of major and minor elements, Lithos, 1989, vol. 22, pp. 247–263.

    Article  Google Scholar 

  56. Ridolfi, F. and Renzulli, A., Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130oC and 2.2 GPa, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 877–895.

    Article  Google Scholar 

  57. Ridolfi, F., Renzulli, A., and Puerini, M., Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes, Contrib. Mineral. Petrol., 2010, vol. 160, pp. 45–66.

    Article  Google Scholar 

  58. Rieder, M., Cavazzini, G., D’yakonov, Y., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.W., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z., and Wones, D.R., Nomenclature of the Micas, Clays and Clay Minerals., 1998, vol. 46, pp. 586–595.

    Article  Google Scholar 

  59. Sarjoughian, F., Kananian, A., Haschke, M., Ahmadian, J., and Ling, W., Magma mingling and hybridization in the Kuh-e Dom intrusion, Central Iran., J. Asian. Earth Sci., 2012, vol. 54, pp. 49–63.

    Article  Google Scholar 

  60. Sarjoughian, F., Javadi, S., Azizi, H., Ling, W., Asahara, Y., and Lentz, D., Geochemical and Sr-Nd isotopic constraints on the genesis of the Soheyle-PaKuh granitoid rocks (central Urumieh-Dokhtar magmatic belt, Iran), Int. Geol. Rev., 2020, vol. 62, pp. 1769–1795.

    Article  Google Scholar 

  61. Schroder, J.W., Essai sur la structure de l’Iran, Ecologae, Geol. Helvetiae., 1944, vol. 37, pp. 37–81.

    Google Scholar 

  62. Shabani, A.A.T., Lalonde, A.E., and Whalen, J.B., Composition of biotite from granitic rocks of the Canadian Appalachian Orogen: A potential tectonomagmatic indicator? Can. Mineral., 2003, vol. 41, pp. 1381–1396.

    Article  Google Scholar 

  63. Shafaii Moghadam, H., Khademi, M., Hu, Z., and Stern, R., Santos, J., and Wu, Y., Cadomian (Ediacaran-Cambrian) arc magmatism in the Chah Jam-Biarjmand metamorphic complex (Iran): Magmatism along the northern active margin of Gondwana, Gondwana Res., 2015, vol. 27, pp. 439–452.

    Article  Google Scholar 

  64. Shahabpour, J., Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz, J. Asian. Earth Sci., 2005, vol. 24, pp. 405–417.

    Article  Google Scholar 

  65. Shahsavari, B.A., Omrannejad, N.R., and Corfu, F., Zircon U-Pb ages and emplacement history of the Nodoushan plutonic complex in the central Urumieh-Dokhtar magmatic belt, Central Iran: Product of Neotethyan subduction during the Paleogene, Asian Earth Sci., 2017, vol. 143, pp. 283–295.

    Google Scholar 

  66. Shahsavari, B.A., Alavijeh, B., Rashidnejad-Omran, N., Toksoy-Koksal, F., Xu, W., and Ghalamghash, J., Oligocene subduction-related plutonism in the Nodoushan area, Urumieh-Dokhtar magmatic belt: Petrogenetic constraints from U-Pb zircon geochronology and isotope geochemistry, Geosci. Front., 2019, vol. 10, pp. 725–751.

    Article  Google Scholar 

  67. Shand, S.J., The Eruptive Rocks: 2nd edition, New York: John Wiley, 1943.

    Google Scholar 

  68. Shelly, D., Igneous and Metamorphic Rocks under the Microscope, London: Chapman and Hall, 1993.

    Google Scholar 

  69. Słaby, E., Campos, C.P., Majzner, K., Simon, K., Gros, K., Moszumanska, I., and Jokubauskas, P., Feldspar megacrysts from the Santa Ang’elica composite pluton—formation/transformation path revealed by combined CL, Raman and LA-ICP-MS data, Lithos, 2016, vol. 16, pp. 4039–4077.

    Google Scholar 

  70. Soesoo, A., A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization: P-T estimations, Geol. Föreningens Stadgar., 1996, vol. 119, pp. 55–60.

    Google Scholar 

  71. Stern, C.R. and Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 263–281.

    Article  Google Scholar 

  72. Stöcklin, J., Structural history and tectonics of Iran; a review, Geol. Soc. Am. Bull., 1986, vol. 52, pp. 1229–1258.

    Google Scholar 

  73. Sun, C.M. and Bertrand, J., Geochemistry of clinopyroxenes in intrusion and volcanic sequences from the Yanbian Proterozoic ophiolites (Sichuan Province, China): Petrogenetic and geotectonic implications, Swiss, Bull. Mineral. Petrol., 1991, vol. 71, pp. 243–259.

    Google Scholar 

  74. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, magmatism in ocean basins, Geol. Soc. London Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  75. Sylvester, P.J., Post-collisional alkaline granites, J. Geology, 1989, vol. 97, pp. 261–280.

    Article  Google Scholar 

  76. Teknik, V. and Ghods, A., Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data, Geophys. J. Int., 2017, vol. 209, pp. 1878–1891.

    Article  Google Scholar 

  77. Väisänen, M., Johansson, A., Andersson, U.B., Eklund, O., and Holtta, P., Paleoproterozoic adakite and TTG-like magmatism in the Svecofennian orogen, SW Finland, Geol. Acta., 2012, vol. 10, pp. 351–371.

    Google Scholar 

  78. Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., A Paleogene extensional arc flare up in Iran, Tectonics, 2011, vol. 30, pp. 1–20.

    Article  Google Scholar 

  79. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  80. Xiao, B., Li, Q.G., Liu, S.W., Wang, Z.Q., and Yang, P.T., Highly fractionated Late Triassic I-type granites and related molybdenum mineralization in the Qinling orogenic belt: Geochemical and U-Pb-Hf and Re-Os isotope constraints, Ore Geol., 2014, vol. 56, pp. 220–233.

    Article  Google Scholar 

  81. Yan, J. and Zhao, J.X., Cenozoic alkali basalts from Jingpohu, NE China. The role of lithosphere asthenosphere interaction, J. Asian. Earth Sci., 2008, vol. 33, pp. 106–121.

    Article  Google Scholar 

  82. Yeganehfar, H., Ghorbani, M., Shinjo, R., and Ghaderi, M., Magmatic and geodynamic evolution of Urumieh-Dokhtar basic volcanism, Central Iran: Major, trace element, isotopic and geodynamic implication, Int. Geol. Rev., 2013, vol. 55, pp. 767–786.

    Article  Google Scholar 

  83. Zhang, S. and Zhao, Y., Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: The Permian plutons in the northern North China Block, Geosphere, 2017, vol. 13, pp. 482–517.

    Article  Google Scholar 

  84. Zhao, Z.F., Gao, P., and Zheng, Y.F., The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range, Chem. Geol., 2015, vol. 395, pp. 11–26.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank University of Isfahan, Iran for financial supports and Naruto University, Japan for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohsen Tabatabaei Manesh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavide, M., Tabatabaei Manesh, S.M. & Ahmadian, J. Petrology and Mineral Chemistry of the Oligocene–Miocene Qazan Granitoids from Central Urumieh-Dokhtar Magmatic Arc, Iran: Implications for the Neo-Tethyan Subduction. Petrology 30, 107–132 (2022). https://doi.org/10.1134/S0869591122010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122010064

Keywords:

Navigation