Skip to main content
Log in

Ferric-ferrous ratio in liquid iron oxides: Analysis and applications to natural basaltic melts

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Experimental data on the proportions of ferrous and ferric iron in pure liquid oxides (Darken and Gurry, 1946) were used to test different redox models. The obtained inferences were used to evaluate possible problems in describing the dependence of Fe3+/Fe2+ on oxygen fugacity in natural basaltic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Borisov and A. I. Shapkin, “New Empirical Equation of Dependence of Fe3+/Fe2+ Ratio in Natural Melts on their Composition, Oxygen Fugacity, and Temperature,” Geokhimiya, No. 6, 892–897 (1989).

  2. A. Borisov and C. McCammon, “The Effect of Silica on Ferric/Ferrous Ratio in Silicate Melts: An Experimental Investigation using Mössbauer Spectroscopy,” Am. Mineral. 95(4), 545–555 (2010).

    Article  Google Scholar 

  3. A. A. Borisov, “Temperature Dependence of Redox Reactions with Participation of Elements of Variable Valence in the Model and Natural Melts,” Geokhimiya, No. 5, 706–714 (1988).

  4. A. Borisov, H. Palme, and B. Spettel, “Solubility of Pd in Silicate Melts: Implications for Core Formation in the Earth,” Geochim. Cosmochim. Acta 58, 705–716 (1994).

    Article  Google Scholar 

  5. D. M. Christie, I. S. E. Carmichael, and C. H. Langmuir, “Oxidation State of Mid-Ocean Ridge Basalt Glasses,” Earth Planet. Sci. Lett. 79, 397–411 (1986).

    Article  Google Scholar 

  6. L. S. Darken and R. W. Gurry, “The System Iron-Oxygen. I. The Wüstite Field and Related Equilibria,” J. Am. Chem. Soc. 67, 1398–1412 (1945).

    Article  Google Scholar 

  7. L. S. Darken and R. W. Gurry, “The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases,” J. Am. Chem. Soc. 68, 798–816 (1946).

    Article  Google Scholar 

  8. P. S. Deines, R. H. Nafziger, G. C. Ulmer, and E. Woermann, “Temperature-Oxygen Fugacity Tables for Selected Gas Mixtures in the System C-H-O at One Atmosphere Total Pressure,” Bull. Earth Miner. Sci., Exp. St., Pennsylv. St. Univ. No. 88 (1974).

  9. R. F. Fudali, “Oxygen Fugacities of Basaltic and Andesitic Magmas,” Geochim. Cosmochim. Acta 29, 1063–1075 (1965).

    Article  Google Scholar 

  10. K. D. Jayasuriya, H. St. C. O’Neil, A. Berry, and S. J. Campbell, “A Mössbauer Study of the Oxidation State of Fe in Silicate Melts,” Am. Mineral. 89, 1597–1609 (2004).

    Google Scholar 

  11. W. D. Johnston, “Oxidation-Reduction Equilibria in Iron-Containing Glass,” J. Am. Ceram. Soc. 47, 198–201 (1964).

    Article  Google Scholar 

  12. G. C. Kennedy, “Equilibrium between Volatiles and Iron Oxides in Igneous Rocks,” Am. J. Sci. 246, 529–549 (1948).

    Article  Google Scholar 

  13. A. Kilinc, I. S. E. Carmichael, M. L. Rivers, and R. O. Sack, “The Ferric-Ferrous Ratio of Natural Silicate Liquids Equilibrated in Air,” Contrib. Mineral. Petrol. 83, 136–140 (1983).

    Article  Google Scholar 

  14. V. C. Kress and I. S. E. Carmichael, “Stoichiometry of the Iron Oxidation Reaction in Silicate Melts,” Am. Mineral. 73, 1267–1274 (1988).

    Google Scholar 

  15. V. C. Kress and I. S. E. Carmichael, “The Compressibility of Silicate Liquids Containing Fe2O3 and the Effect of Composition, Temperature, Oxygen Fugacity and Pressure on Their Redox States,” Contrib. Mineral. Petrol. 108, 82–92 (1991).

    Article  Google Scholar 

  16. H. St. C. O’Neill and M. I. Pownceby, “Thermodynamic Data from Redox Reactions at High Temperatures. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, with Revised Values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers, and New Data for the W-WO2 Buffer,” Contrib. Mineral. Petrol. 114, 296–314 (1993).

    Article  Google Scholar 

  17. H. St. C. O’Neill, “Quartz-Fayalite-Iron and Quartz-Fayalite-Magnetite Equilibria and the Free Energy of Formation of Fayalite (Fe2SiO4) and Magnetite (Fe3O4),” Am. Mineral. 72, 67–75 (1987).

    Google Scholar 

  18. R. O. Sack, I. S. E. Carmichael, M. Rivers, and N. S. Ghiorso, “Ferric-Ferrous Equilibria in Natural Silicate Liquids at 1 Bar,” Contrib. Mineral. Petrol. 75, 369–376 (1980).

    Article  Google Scholar 

  19. K. Shibata, “The Oxygen Partial Pressure of the Magma from Mihara Volcano, O-Sima, Japan,” Bull. Chem. Soc. Japan 40, 830–834 (1967).

    Article  Google Scholar 

  20. C. R. Thornber, P. L. Roeder, and J. R. Foster, “The Effect of Composition on the Ferric-Ferrous Ratio in Basaltic Liquids at Atmospheric Pressure,” Geochim. Cosmochim. Acta 44, 525–532 (1980).

    Article  Google Scholar 

  21. J. White, “Equilibrium at High Temperatures in Systems Containing Iron Oxides,” Carnegie Scholarship Mem. 27, 1–75 (1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Borisov.

Additional information

Original Russian Text © A.A. Borisov, 2010, published in Petrologiya, 2010, Vol. 18, No. 5, pp. 494–504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.A. Ferric-ferrous ratio in liquid iron oxides: Analysis and applications to natural basaltic melts. Petrology 18, 471–481 (2010). https://doi.org/10.1134/S0869591110050024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110050024

Keywords

Navigation