Skip to main content
Log in

A Study of the Accelerating Universe in \(\boldsymbol{f(R)}\) Modified Gravity Using the Dynamical System Approach

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The accelerated expansion of the Universe constitutes one of the biggest challenges in present-day cosmology. To understand and explain this phenomenon in the framework of general relativity, corrections and extensions to it are required, which make the so-called extended theories of gravity (ETGs). In these theories, the geometry of space-time that represents the gravitational sector at the left hand side of the Einstein field equation \({G_{\mu\nu}}=8\pi{T_{\mu\nu}}\) is necessarily modified. These theories have attracted much attention since the time the accelerated expansion was discovered. A class of these theories known as \(f(R)\) gravity, offers a potent candidacy for this purpose, in addition to matter content modifications. The gravitational sector depending on the Ricci scalar invariant \(R\) is basically replaced with some its general nonlinear function which consists of higher-order curvature terms. In this work, we attempt to realize the late-time accelerated expansion in the context of \(f(R)\) gravity using the dynamical system approach. Analyzing the dynamical system arising from a particular \(f(R)\) model, its stability is studied for the cosmological inferences. The particular model \(f(R)={R^{p}}\exp({qR})\) with \(m=\frac{{R{f_{,RR}}}}{{{f_{,R}}}}=\frac{{p(p-1)+2pqR+{q^{2}}{R^{2}}}}{{p+qR}}\) and \(r=-\frac{{R{f_{,R}}}}{f}=-(p+qR)\) and with the geometric curve \(m(r)=-\frac{{{r^{2}}-p}}{r}\), is studied in this paper. We use the geometric approach for the curve \(m(r)\) in the plane \((r,m)\) which provides some properties of the model. In the case of a matter-dominated era the viability conditions at \(r=-1\), \(m(r)=0\) and \(dm/dr>-1\) are investigated. On the other hand, for the late-time acceleration, however, at \(r=-2\), either of the two conditions \(m(r)=-r-1\) with \(dm/dr<-1\), \(1\geq m>(\sqrt{3}-1)/2\) and \(1\geq m\geq 0\) are sought to fulfill. In the first place, the cosmic content is assumed to comprise matter and radiation only in the absence of a cosmological constant \(\Lambda\). In this case, an interaction of any kind is disregarded. Afterwards, as the second consideration, an interaction term in the presence of a cosmological constant representing dark energy is taken into account. The effects of linear and nonlinear interactions between matter and dark energy are also taken into account orderly in this case. The results are presented for each case, along with a discussion of critical points, their eigenvalues, and the equation of state parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116 (3), 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae,” Astron. J. 517 (2), 565 (1999).

    Google Scholar 

  3. A. G. Riess et al., “The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration,” Astron. J. 560 (1), 49 (2001).

    Google Scholar 

  4. https://www.nobelprize.org/prizes/physics/2011/ press-release/

  5. S. Perlmutter, B. P. Schmidt, and A. G. Riess, “The Nobel prize in physics 2011. A. G. Riess, My path to the accelerating Universe,” Nobel Lecture (2011).

    Google Scholar 

  6. D. Huterer and M. S. Turner, “Prospects for probing the dark energy via supernova distance measurements.” Phys. Rev. D 60 (8), 081301 (1999).

    ADS  Google Scholar 

  7. S. Perlmutter, M. S. Turner, and M. White, “Constraining dark energy with type Ia supernovae and large-scale structure,” Phys. Rev. Lett. 83 (4), 670 (1999).

    ADS  Google Scholar 

  8. N. Aghanim et al., “Planck 2018 results—VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  9. C. To et al. (DES Collaboration), “Dark Energy survey year 1 results: cosmological constraints from cluster abundances, weak lensing, and galaxy correlations,” Phys. Rev. Lett. 126 (14), 141301 (2021).

    ADS  Google Scholar 

  10. D. Benisty and D. Staicova, “Testing late-time cosmic acceleration with uncorrelated baryon acoustic oscillation dataset,” Astron. Astrophys. 647, A38 (2021).

    ADS  Google Scholar 

  11. A. Mazumdar, S. Mohanty, and P. Parashari, “Evidence of dark energy in different cosmological observations,” Eur. Phys. J. Spec. Top. 1–12 (2021).

  12. G. Lemaître, “The beginning of the world from the point of view of quantum theory,” Nature 127 (3210), 706–706 (1931).

    ADS  MATH  Google Scholar 

  13. H. S. Kragh and D. Lambert, “The context of discovery: Lemaître and the origin of the primeval-atom universe,” Ann. Sci. 64 (4), 445–470 (2007).

    Google Scholar 

  14. A. A. Friedmann, The World as Space and Time (Minkowski Institute Press, 2014).

    Google Scholar 

  15. A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91 (1), 99–102 (1980).

    ADS  MATH  Google Scholar 

  16. A. H. Guth, “Inflationary universe: A possible solution to the horizon and flatness problems,” Phys. Rev. D 23 (2), 347 (1981).

    ADS  MATH  Google Scholar 

  17. K. Sato, “First-order phase transition of a vacuum and the expansion of the Universe,” Mon. Not. Roy. Astron. Soc. 195 (3), 467–479 (1981).

    ADS  Google Scholar 

  18. D. Kazanas, “Dynamics of the universe and spontaneous symmetry breaking,” Astron. J. 241, L59–L63 (1980).

    ADS  Google Scholar 

  19. L. Perivolaropoulos and F. Skara, “Challenges for CDM: An update,” arXiv: 2105.05208.

  20. A. H. Guth, D. I. Kaiser, and Y. Nomura, “Inflationary paradigm after Planck 2013,” Phys. Lett. B 733, 112–119 (2014).

    ADS  Google Scholar 

  21. C. Smeenk, “False vacuum: Early universe cosmology and the development of inflation.” In: The Universe of General Relativity (Birkh’auser, Boston, 2005), pp. 223–257.

    MATH  Google Scholar 

  22. J. Earman and J. Mosterin, “A critical look at inflationary cosmology,” Philos. Sci. 66 (1), 1–49 (1999).

    MathSciNet  Google Scholar 

  23. M. Ishak, “Testing general relativity in cosmology,” Living Rev. Relativ. 22 (1), 1–204 (2019).

    ADS  Google Scholar 

  24. M. Z. Mughal and I. Ahmad, “A multi-field tachyon-quintom model of dark energy and fate of the Universe,” Eur. Phys. J. Plus 136 (5), 1–20 (2021).

    Google Scholar 

  25. A. Einstein, “Cosmological considerations in the General Theory of Relativity.” Volume 6: The Berlin Years: Writings, 1914–1917, Doc. 43; Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 421–450 (1917).

  26. A. Einstein, “On the generalized theory of gravitation,” Sci. Am. 182, 13–17 (1950).

    Google Scholar 

  27. T. Padmanabhan, “Cosmological constant—the weight of the vacuum,” Phys. Rep. 380 (5-6), 235–320 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  28. V. Sahni and A. Starobinsky, “The case for a positive cosmological \(\Lambda\)-term.” Int. J. Mod. Phys. D 9 (04), 373–443 (2000).

    ADS  Google Scholar 

  29. E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15(11), 1753–1935 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  30. K. Bamba, S. Capozziello, S. I. Nojiri, and S. D. Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Astrophys. Space Sci 342 (1), 155–228 (2012).

    ADS  MATH  Google Scholar 

  31. S. Bahamonde, C. G. Böhmer, S. Carloni, E. J. Copeland, W. Fang, and N. Tamanini, “Dynamical systems applied to cosmology: dark energy and modified gravity,” Phys. Rep. 775, 1–122 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  32. J. Yoo and Y. Watanabe, “Theoretical models of dark energy,” Int. J. Mod. Phys. D 21 (12), 1230002 (2012).

    ADS  MATH  Google Scholar 

  33. V. Faraoni and S. Capozziello, “Beyond Einstein gravity,” Fundamental Theories of Physics 170 (2011).

  34. H. A. Buchdahl, “Nonlinear Lagrangians and cosmological theory,” Mon. Not. Roy. Astron. Soc. 150 (1), 1–8 (1970).

    ADS  Google Scholar 

  35. B. N. Brejzman, V. T. Gurovich, and V. P. Sokolov, “On the possibility of setting up regular cosmological solutions”, ZhETF 59, 288-294 (1970);

    ADS  Google Scholar 

  36. B. N. Brejzman, V. T. Gurovich, and V. P. Sokolov, “On the possibility of setting up regular cosmological solutions,” ZhETF 59, 288-294 (1970); Sov. Phys. JETP 32, 155 (1970).

  37. P. G. Bergmann, “Comments on the scalar-tensor theory,” Int. J. Theor. Phys. 1 (1), 25–36 (1968).

    Google Scholar 

  38. T. Ruzmaikina and A. A. Ruzmaikin, “Quadratic corrections to the Lagrangian density of the gravitational field and the singularity,” Sov. Phys. JETP 30, 372 (1970).

    ADS  Google Scholar 

  39. A. De Felice and S. Tsujikawa, ‘f(R) theories,” Living Rev. Relativ. 13 (1), 1–161 (2010).

    ADS  MATH  Google Scholar 

  40. L. Amendola, A. B. Mayer, S. Capozziello, S. Gottlober, V. Muller, F. Occhionero, and H. J. Schmidt, “Generalized sixth-order gravity and inflation,” Class. Quantum Grav. 10 (5), L43 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  41. S. Gottlober, H. J. Schmidt, and A. A. Starobinsky, “Sixth-order gravity and conformal transformations,” Class. Quantum Grav. 7 (5), 893 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  42. A. B. Mayer and H. J. Schmidt, “The de Sitter spacetime as attractor solution in eighth-order gravity,” Class. Quantum Grav. 10 (11), 2441 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  43. H. J. Schmidt, ‘Variational derivatives of arbitrarily high order and multi-inflation cosmological models,” Class. Quantum Grav. 7 (6), 1023 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  44. S. Capozziello, S. Carloni, and A. Troisi, “Quintessence without scalar fields,” astro-ph/0303041.

  45. A. Einstein, Title?? Sitzungber. Preuss Akad. Wiss. Phys.-Math. Kl 23 (3) (1925).

  46. S. Capozziello, M. De Laurentis, and V. Faraoni, “A bird’s eye view of f(R)-gravity,” arXiv: 0909.4672.

  47. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,” Phys. Rep. 513 (1–3), 1–189 (2012).

    ADS  MathSciNet  Google Scholar 

  48. S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution,” Phys. Rep. 692, 1–104 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  49. T. P. Sotiriou, “Constraining f(R) gravity in the Palatini formalism,” Class. Quantum Grav. 23 (4), 1253 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  50. T. P. Sotiriou and S. Liberati, “Metric-affine f(R) theories of gravity,” Ann. Phys. (NY) 322 (4), 935–966 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  51. R. Ferraro, “f(R) and f(T) theories of modified gravity,” AIP Conference Proceedings 1471 (1), 103–110 (2012).

    ADS  Google Scholar 

  52. S. I. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geom. Methods Mod. Phys. 4 (01), 115–145 (2007).

    MathSciNet  MATH  Google Scholar 

  53. T. P. Sotiriou and V. Faraoni, “f(R) theories of gravity,” Rev. Mod. Phys. 82 (1), 451 (2010).

    ADS  MATH  Google Scholar 

  54. A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Relativ. 13 (1), 1–161 (2010).

    ADS  MATH  Google Scholar 

  55. S. D. Odintsov and V. K. Oikonomou, “Aspects of axion F(R) gravity,” EPL (EPL-EUROPHYS LETTR) 129 (4), 40001 (2020).

  56. S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Constant-roll inflation in F(R) gravity,” Class. Quantum Grav. 34 (24), 245012 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  57. S. D. Odintsov and V. K. Oikonomou, “Effects of spatial curvature on the f(R) gravity phase space: no inflationary attractor?” Class. Quantum Grav. 36 (6), 065008 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  58. S. I. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models,” Phys. Rep. 505 (2-4), 59–144 (2011).

    ADS  MathSciNet  Google Scholar 

  59. S. D. Odintsov and V. K. Oikonomou, “Reconstruction of slow-roll F(R) gravity inflation from the observational indices,” Ann. Phys. (NY) 388, 267–275 (2018).

    ADS  MathSciNet  Google Scholar 

  60. S. Capozziello, C. A. Mantica, and L. G. Molinari, “Cosmological perfect fluids in f(R) gravity,” Int. J. Geom. Methods Mod. Phys. 16 (01), 1950008 (2019).

    MathSciNet  MATH  Google Scholar 

  61. S. Capozziello and M. De Laurentis, “Extended theories of gravity,” Phys. Rep. 509 (4-5), 167–321 (2011).

    ADS  MathSciNet  Google Scholar 

  62. S. Capozziello, S. I. Nojiri, and S. D. Odintsov, “The role of energy conditions in f(R) cosmology,” Phys. Lett. B 781, 99–106 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  63. K. Bamba, S. Capozziello, S. I. Nojiri, and S. D. Odintsov, ‘Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Astrophys. Space Sci. 342 (1), 155–228 (2012).

    ADS  MATH  Google Scholar 

  64. M. Z. Mughal, I. Ahmad, and J. L. García Guirao, “Relativistic cosmology with an introduction to inflation,” Universe 7 (8), 276 (2021).

    ADS  Google Scholar 

  65. S. Bekov, K. Myrzakulov, R. Myrzakulov, and D. Sáez-Chillón Gómez, “General slow-roll inflation in f(R) gravity under the Palatini approach,” Symmetry 12 (12), 1958 (2020).

    Google Scholar 

  66. S. I. Nojiri and S. D. Odintsov, “Modified f(R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe,” Phys. Rev. D 74 (8), 086005 (2006).

    ADS  Google Scholar 

  67. K. Bamba and S. D. Odintsov, “Inflationary cosmology in modified gravity theories,” Symmetry 7 (1), 220–240 (2015).

    MathSciNet  MATH  Google Scholar 

  68. T. B. Vasilev, M. Bouhmadi-López, and P. Martín-Moruno, “Little rip in classical and quantum f(R) cosmology,” Phys. Rev. D 103 (12), 124049 (2021).

    ADS  MathSciNet  Google Scholar 

  69. L. Amendola and S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, 2010).

    MATH  Google Scholar 

  70. S. Capozziello, and M. De Laurentis, “F(R) theories of gravitation,” Scholarpedia 10 (2), 31422 (2015).

    ADS  Google Scholar 

  71. L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, “Conditions for the cosmological viability of f(R) dark energy models,” Phys. Rev. D 75(8), 083504 (2007).

    ADS  Google Scholar 

  72. P. Shah and G. C. Samanta, “Stability analysis for cosmological models in f(R) gravity using dynamical system analysis,” Eur. Phys. J. C 79 (5), 1–9 (2019).

    Google Scholar 

  73. L. Amendola and S. Tsujikawa, “Phantom crossing, equation-of-state singularities, and local gravity constraints in f(R) models,” Phys. Lett. B 660 (3), 125–132 (2008).

    ADS  Google Scholar 

  74. W. Hu and I. Sawicki, “Models of f(R) cosmic acceleration that evade solar system tests,” Phys. Rev. D 76 (6), 064004 (2007).

    ADS  Google Scholar 

  75. S. Capozziello and S. Tsujikawa, “Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach,” Phys. Rev. D 77 (10), 107501 (2008).

    ADS  Google Scholar 

  76. K. Bamba, “Equation of state for dark energy in modified gravity theories,” In: Quest for the Origin of Particles and the Universe (World Scientific, 2013), pp. 73–79.

    Google Scholar 

  77. F. Arevalo, A. P. Bacalhau, and W. Zimdahl, “Cosmological dynamics with nonlinear interactions,” Astrophys. Space Sci. 29 (23), 235001 (2012).

    MathSciNet  MATH  Google Scholar 

  78. R. Garcia-Salcedo, T. Gonzalez, and I. Quiros, “Phase space dynamics of non-gravitational interactions between dark matter and dark energy: The case of ghost dark energy,” arXiv: 1211.2738.

  79. H. Golchin, S. Jamali, and E. Ebrahimi, “Interacting dark energy: Dynamical system analysis,” Int. J. Mod. Phys. D 26 (09), 1750098 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  80. J. H. He and B. Wang, “Effects of the interaction between dark energy and dark matter on cosmological parameters,” J. Cosmol. Astropart. Phys. 2008 (06), 010 (2008).

  81. Y. L. Bolotin, A. Kostenko, O. A. Lemets, and D. A. Yerokhin, “Cosmological evolution with interaction between dark energy and dark matter,” Int. J. Mod. Phys. D 24 (03), 1530007 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Zahid Mughal or Iftikhar Ahmad.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mughal, M.Z., Ahmad, I. A Study of the Accelerating Universe in \(\boldsymbol{f(R)}\) Modified Gravity Using the Dynamical System Approach. Gravit. Cosmol. 28, 37–58 (2022). https://doi.org/10.1134/S0202289322010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289322010091

Navigation